Algebro-analytic and/or representation-theoretic study of hypergeometric differential systems
超几何微分系统的代数分析和/或表示理论研究
基本信息
- 批准号:10640146
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support of many examples by a computer, and by communication with world-wide experts in several fields, we obtained the following results.Mutsumi Saito has studied A-hypergeometric systems. He, in collaboration with Bernd Sturmfels and Nobuki Takayama, found and studied an unexpected relationship between A-hypergeometric systems and integer programmings, and showed the invariance of the rank of a regular holonomic system under Grobner deformations, and obtained three sufficient conditions for the rank of an A-hypergeometric system to equal the volume of the convex hull spanned by A. He classified parameters according to D-isomorphism classes of their corresponding A-hypergeometric systems.Hiro-Fumi Yamada has studied the relationship between Q-functions and affine Lie algebras. He showed a Q-function expressed as a polynomial of power sum symmetric functions is a weight vector for the basic representation of a certain affine Lie algebra realized on the polynomial ring, and illustrated the corresponding weight by Young diagrams. He also found an unexpected relation of Schur's S-functions and Q-functions.Hiroshi Yamashita has studied Harish-Chandra modules. He specified the embedding of Borel-de Siebenthal discrete series into the principal series representations. He also described the associated cycles of some important representations, such as discrete series and unitary highest weight representations, by using the principal symbols of invariant differential operators of gradient type whose kernels realize their dual Harish-Chandra modules.Youichi Shibukawa has worked on Ruijsenaars-Schneider dynamical integrable system. Related to its Lax presentation, he, in collaboration with Nariya Kawazumi, obtained all meromorphic solutions to the Bruschi-Calogero differential equation.
通过计算机上的大量例子的支持,以及与世界上几个领域的专家的交流,我们得到了以下结果:斋藤睦美研究了A-超几何系统。他与Bernd Sturmfels和Nobuki Takayama合作,发现并研究了A-超几何系统与整数规划之间的一种意想不到的关系,证明了正则完整系统的秩在Grobner变形下的不变性,得到了A-超几何系统的秩等于A所张凸船体体积的三个充分条件.他根据A-超几何系统的D-同构类对参数进行了分类,Hiro-Fumi Yamada研究了Q-函数与仿射李代数之间的关系。他证明了表示为幂和对称函数的多项式的Q-函数是在多项式环上实现的某个仿射李代数的基本表示的权向量,并通过Young图说明了相应的权。他还发现了一个意想不到的关系舒尔的S-职能和Q-职能。山下弘研究哈里什-钱德拉模块。他指定嵌入Borel-德Siebenthal离散系列的主要系列表示。他还利用其核实现对偶Harish-Chandra模的梯度型不变微分算子的主符号描述了一些重要表示(如离散级数和酉最高权表示)的相关循环。有关其拉克斯介绍,他与川澄成也合作,获得了所有亚纯解的奇-Calogero微分方程。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mutsumi Saito: "Hypergeometric polynomials and integer programming"Campositio Mathematica. 115. 185-204 (1999)
Mutsumi Saito:“超几何多项式和整数规划”Campositio Mathematica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mutsumi Saito: "Hypergeometric polynomials and integer programming"Compositio Mathematica. 115,2. 185-204 (1999)
Mutsumi Saito:“超几何多项式和整数规划”Compositio Mathematica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mutsumi Saito: "Hypergeometric polynomials and integer programming"Compositio Mathematica. 115. 185-204 (1999)
Mutsumi Saito:“超几何多项式和整数规划”Compositio Mathematica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuhiro Nakajima: "Schur's Q-functions and twisted affine Lie algebras"Advanced Studies in Pure Math.. (in press).
Tatsuhiro Nakajima:“Schur 的 Q 函数和扭曲仿射李代数”纯数学高级研究..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mutsumi Saito: "Grobner deformations of hypergeometilc differential equations"Springer-Verlag. 254 (2000)
Mutsumi Saito:“超几何微分方程的格罗布纳变形”Springer-Verlag。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAITO Mutsumi其他文献
SAITO Mutsumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAITO Mutsumi', 18)}}的其他基金
Research on monoids consisting of limits of linear actions on a projective manifold
射影流形上线性作用极限的幺半群研究
- 批准号:
15K13421 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Deformation of Lie subalgebras and systems of hypergeometric equations
李子代数和超几何方程组的变形
- 批准号:
24540002 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of hyergeometric systems with resonant parameters
具有共振参数的水几何系统的研究
- 批准号:
21540001 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
THE RING OF DIFFERENTIAL OPERATORS ON AN AFFINE TORIC VARIETYAND ITS APPLICATIONS
仿射复曲面簇上的微分算子环及其应用
- 批准号:
18540002 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification problem of hypergeometric differential systems
超几何微分系统的分类问题
- 批准号:
12640149 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)