Renormalization group transformation in lattice QCD with quarks
夸克晶格 QCD 中的重正化群变换
基本信息
- 批准号:10640248
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims at a research of improved actions in quantum chromodynamics (QCD) with dynamical quarks, using the renormalization group method. Because the gauge part of the lattice action introduce lattice artifacts of O(a^2), with a the lattice spacing, it has been considerd that an improvement of the quark part, which has O(a) errors with the standard Wilson fermion action, might remove the major prt of the lattice artifacts in numerical simulations. However, the most problematic lattice artifact, the violation of the chiral symmetry on the lattice, is due to the doublers, whose effects cannot be estimated by a naive order counting in α. In order to suppress the contamination of doublers in physical observables, the maximum momentum in the background gauge configuration should be small. Here, we note that a renormalization group (RG) transformation directly suppress such high momentum modes. Therefore, unlike the case of Symanzik improvement program which is based on a naive power counting in α, we expect that a RG-improved gauge action is efficient to suppress lattice artifacts due to doublers. We study the combination of a RG-improved gauge action and a clover-improved quark action.From a systematic comparative study of improved and standard actions, we found that improvement is necessary both for the gauge and quark parts. We then started to apply our combination of improved actions to the problems of light hadron mass spectrum, light quark mass, static quark potential, the U (1) problem, decay constants and mass spectrum for hadrons including heavy quarks, b and c, and performed the first systematic study of hadron properties in full QCD including a continuum extrapolation. We also studied the equaton of state for QCD at finite temperature. From these studies, importance of dynamical quarks, and also of action improvements, is confirmed.
本计画旨在利用重整化群方法,研究含动态夸克的量子色动力学(QCD)的改良作用量。由于格点作用量的规范部分引入了O(a^2)的格点伪影,具有格点间距,因此已经证明,对夸克部分的改进可能会在数值模拟中消除格点伪影的主要部分,夸克部分与标准威尔逊费米子作用量有O(a)的误差。然而,最有问题的晶格伪像,晶格上手征对称性的破坏,是由于倍增器,其影响不能通过α的简单顺序计数来估计。为了抑制物理观测中的倍增器污染,背景规范位形中的最大动量应该很小。在这里,我们注意到,重整化群(RG)变换直接抑制这样的高动量模式。因此,与Symanzik改进方案基于α中的朴素幂计数的情况不同,我们期望RG改进的规范作用量能够有效地抑制由于倍增器引起的晶格伪影。我们研究了RG改进的规范作用量和Clover改进的夸克作用量的组合,通过对改进的规范作用量和标准作用量的系统比较,发现对规范和夸克部分都需要改进。然后,我们开始将改进的工作组合应用于轻强子质量谱、轻夸克质量、静态夸克势、U(1)问题、强子(包括重夸克、B和c)的衰变常数和质量谱等问题,并首次在全QCD中对强子性质进行了系统的研究,包括连续外推。我们还研究了有限温度下QCD的状态方程。从这些研究中,动力学夸克的重要性,以及行动的改进,得到证实。
项目成果
期刊论文数量(158)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.AliKhan et al.: "Chiral properties of domain-wall quarks in quaenched QCD"Phys.Rev.D. (2001)
A.AliKhan 等人:“淬灭 QCD 中域壁夸克的手性特性”Phys.Rev.D。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Aoki, G.Boyd, R.Burkhalter, S.Ejiri, M.Fukugita, S.Hashimoto, Y.Iwasaki, K.Kanaya, T.Kaneko, Y.Kuramashi, K.Nagai, M.Okawa, H.P.Shanahan, A.Ukawa, and T.Yoshie: "Full QCD light hadron spectrum from the CP-PACS"Nucl. Phys. B (Proc. Suppl.). 73. 192-194 (
S.Aoki、G.Boyd、R.Burkhalter、S.Ejiri、M.Fukugita、S.Hashimoto、Y.Iwasaki、K.Kanaya、T.Kaneko、Y.Kuramashi、K.Nagai、M.Okawa、H.P.Shanahan
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.AliKhan, S.Aoki, R.Burkhalter, S.Ejiri, M.Fukugita, S.Hashimoto, N.Ishizuka, Y.Iwasaki, K.Kanaya, T.Kaneko, Y.Kuramashi, T.Manke, K.Nagai, M.Okawa, H.P.Shanahan, A.Ukawa, T.Yoshie: "Heavy quarkonia from anisotropic and isotropic lattices"Nucl. Phys. B (
A.AliKhan、S.Aoki、R.Burkhalter、S.Ejiri、M.Fukugita、S.Hashimoto、N.Ishizuka、Y.Iwasaki、K.Kanaya、T.Kaneko、Y.Kuramashi、T.Manke、K.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.AliKhan, S.Aoki, Y.Aoki, R.Burkhalter, S.Ejiri, M.Fukugita, S.Hashimoto, N.Ishizuka, Y.Iwasaki, T.Izubuchi, K.Kanaya, T.Kaneko, Y.Kuramashi, T.Manke, K.I.Nagai, J.Noaki, M.Okawa, H.P.Shanahan, Y.Taniguchi, A.: "Chiral properties of domain-wall quarks in
A.AliKhan、S.Aoki、Y.Aoki、R.Burkhalter、S.Ejiri、M.Fukugita、S.Hashimoto、N.Ishizuka、Y.Iwasaki、T.Izubuchi、K.Kanaya、T.Kaneko、Y.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Nakamura: "Gluon Propagators and QCD Vacuum" Prog.Theor.Phys.Suppl.131. 585-596 (1998)
A.Nakamura:“胶子传播器和 QCD 真空”Prog.Theor.Phys.Suppl.131。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANAYA Kazuyuki其他文献
KANAYA Kazuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANAYA Kazuyuki', 18)}}的其他基金
Study of QCD at finite temperature and finite density on the lattice with physical quark masses
具有物理夸克质量的晶格在有限温度和有限密度下的QCD研究
- 批准号:
21340049 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-perturbative study of QCD at finite temperatures and densities
有限温度和密度下 QCD 的非微扰研究
- 批准号:
17340066 - 财政年份:2005
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Influence of dynamical strange quark on finite-temperature QCD transition
动力奇夸克对有限温度QCD跃迁的影响
- 批准号:
13640260 - 财政年份:2001
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite temperature transition in lattice QCD with the strange quark
奇夸克晶格 QCD 中的有限温度跃迁
- 批准号:
07640376 - 财政年份:1995
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Algorithms for Lattice Fermions
格子费米子算法
- 批准号:
390966303 - 财政年份:2018
- 资助金额:
$ 1.86万 - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Study of QCD at low temperature and finite density with a new technique for lattice fermions
利用晶格费米子新技术研究低温有限密度QCD
- 批准号:
26800154 - 财政年份:2014
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Graph Theoretic Approaches to Quantum Monte Carlo Simulations of Lattice Fermions
格子费米子量子蒙特卡罗模拟的图论方法
- 批准号:
448538-2013 - 财政年份:2013
- 资助金额:
$ 1.86万 - 项目类别:
University Undergraduate Student Research Awards
Supersymmetry by lattice fermions near the continuum limit
接近连续极限的晶格费米子的超对称性
- 批准号:
12640259 - 财政年份:2000
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)