Energy loss and noise by chaotic motion of magnetic spin
磁自旋混沌运动造成的能量损失和噪声
基本信息
- 批准号:10650269
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The energy loss caused by the domain-wall motion is calculated by integrating damping term. The value of the energy loss is discussed in connection with the bifurcation diagram. The energy loss jumps to a high value at the first transition to chaos. The energy loss in the periodic window is larger than the value in the neighboring chaotic region in spite of their having the same damping coefficient.A chaotic region of domain wall motion is calculated as a function of the amplitude and frequency of the external magnetic drive field. It shows an intricate pattern composed of regular and chaotic regions. An energy loss and the Lyapunov exponent of domain wall motion are calculated. A frequency at the peak of the energy loss versus frequency curve, namely a nonlinear resonance frequency, is different from a resonance frequency in the linear theory as it shifts toward a lower frequency with increasing amplitude of the external magnetic drive field. This peak shift is explained by the effect … More of the higher order term in the nonlinear restoring force. The energy loss versus frequency curve becomes irregular and the energy loss decreases in the chaotic region where the Lyapunov exponent is positive.The two-step Ott-Grebogi-Yorke (OGY) method and the prediction OGY method for controlling chaos of magnetic domain-wall motion are proposed to improve the long settling time in the original OGY method. In the two-step OGY method, a magnetic domain wall is first moved on a periodic orbit and the OGY method is used when the orbit approaches a saddle point. In the prediction OGY method, the motion of the domain wall is predicted before the OGY method is applied. An attractor in the state space can be reconstructed by using the time series of the domain-wall motion. The near future can be predicted even in the chaotic system, because the short time developments of the neighborhood system of a predictee in the attractor are not so different from each other. The settling time of the improved OGY methods is 1/5-1/30 times as long as that of the original OGY method. Less
通过积分阻尼项计算了畴壁运动引起的能量损失。结合分岔图讨论了能量损失的值。能量损失在第一次过渡到混沌时跳到一个很高的值。结果表明,在相同的阻尼系数下,周期窗口内的能量损失大于相邻混沌区域的能量损失;计算了畴壁运动的混沌区域随外加磁场的幅值和频率的变化.它显示出由规则和混乱区域组成的复杂图案。计算了畴壁运动的能量损失和李雅普诺夫指数。能量损失对频率曲线的峰值处的频率,即非线性谐振频率,与线性理论中的谐振频率不同,因为其随着外部磁驱动场的振幅的增加而向较低频率偏移。这种峰移可以用以下效应来解释: ...更多信息 非线性恢复力中的高阶项。在李雅普诺夫指数为正的混沌区,能量损失随频率的变化曲线变得不规则,能量损失减小.针对两步OGY方法和预测OGY方法控制磁畴壁运动混沌的问题,提出了两步OGY方法和预测OGY方法.在两步OGY方法中,磁畴壁首先在周期轨道上移动,当轨道接近鞍点时使用OGY方法。在预测OGY方法中,在应用OGY方法之前预测磁畴壁的运动。利用畴壁运动的时间序列,可以重构出状态空间中的吸引子。即使在混沌系统中,近期的未来也可以被预测,因为被预测者在吸引子中的邻域系统的短期发展彼此没有太大的不同。改进后的OGY法的建立时间是原OGY法的1/5-1/30。少
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Okuno, Y.Okada and H.Takeda: "Chaos of domain wall and OGY controlling with method of predicting"Digest of the 22 annual conference on Magnetics in Japan. 22. 141 (1998)
H.Okuno、Y.Okada 和 H.Takeda:“用预测方法控制磁畴壁的混沌和 OGY”第 22 届日本磁学年会摘要。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
奥野 光: "非線形磁壁共鳴のピークシフトとカオス"日本応用磁気学会学術講演概要集. 23. 321 (1999)
Hikaru Okuno:“非线性畴壁共振中的峰移和混沌”日本应用磁学学会学术讲座摘要 23. 321 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hikaru Okuno: "Controlling chaos of nonlinear domain-wall motion"Journal of Applied Physics. 85・8. 5083-5085 (1999)
奥野光:“非线性域壁运动的混沌控制”应用物理学杂志85・8(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
奥野光: "非線形磁壁共鳴のピークシフトとカオス"第23回日本応用磁気学会学術講演概要集. 321 (1999)
Hikaru Okuno:“非线性畴壁共振中的峰移和混沌”日本应用磁学学会第 23 届年会摘要 321(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
奥野 光: "磁壁のカオス運動とエネルギー損失"東北大学電気通信研究所スピニクス研究会. MS6 (1999)
Hikaru Okuno:“畴壁的混沌运动和能量损失”东北大学电气通信研究所 Spinics 研究小组 MS6(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKUNO Hikaru其他文献
OKUNO Hikaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKUNO Hikaru', 18)}}的其他基金
Power stabilization control in large-scale power generation system linked with small-scale local power generation sysytem
大型发电系统与小型本地发电系统联动的功率稳定控制
- 批准号:
26420882 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of nano-meter multilayered magnetic film with super low energy loss and application for electric motor
超低能量损耗纳米多层磁性薄膜的研制及其在电机上的应用
- 批准号:
15560269 - 财政年份:2003
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Local probing and imaging of spin wave propagating in a magnetic domain wall via scanning diamond NV probe microscopy
通过扫描金刚石 NV 探针显微镜对磁畴壁中传播的自旋波进行局部探测和成像
- 批准号:
24K17580 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Highly efficient magnetic domain wall motion driven by spin-orbit torque in rare-earth free single crystal nitrides.
无稀土单晶氮化物中自旋轨道扭矩驱动的高效磁畴壁运动。
- 批准号:
21J10330 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
TAILORING SPIN-ORBIT INTERACTIONS FOR NEUROMORPHIC COMPUTING WITH MAGNETIC DOMAIN WALL MOTION
利用磁畴壁运动定制自旋轨道相互作用以实现神经形态计算
- 批准号:
17H06511 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Controlling of nanostructured magnetic domain wall and its application to three dimensional shift resistor
纳米结构磁畴壁的控制及其在三维移位电阻中的应用
- 批准号:
16K14257 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Magnetic domain wall motion induced by electric field
电场引起的磁畴壁运动
- 批准号:
15H05419 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Novel magnetic domain wall motion scheme in ultra-narrow planar wire and its evolution to three-dimensional device
超窄平面线中新型磁畴壁运动方案及其向三维器件的演化
- 批准号:
15H05521 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Nonlinear magneto-electric effect in artificial magnetic domain wall
人工磁畴壁中的非线性磁电效应
- 批准号:
15H03966 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the Dzyaloshinskii-Moriya interaction on magnetic domain wall dynamics
Dzyaloshinskii-Moriya 相互作用对磁畴壁动力学的研究
- 批准号:
26870304 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Magnetoresistive sensors for magnetic domain wall technologies
用于磁畴壁技术的磁阻传感器
- 批准号:
EP/F068573/1 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Research Grant