Cooperative Coevolvable Hardware and Its Applications
协同协同演化硬件及其应用
基本信息
- 批准号:10650375
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theoretic foundation of this research is a Society model for cooperative co-evolutionary algorithms (CoopCEAs), which was proposed currently by Zhao. CoopCEA is a new paradigm for evolutionary computation, which is, as believed by many researchers, more suitable for solving large-scale and complex problems. Our final goal is to realize the society model in hardware, so that practical systems can be evolved in lightning speed. This goal, however, is too difficult to be achieved in two years. One reason is that there are still a few open problems to be solved concerning the societv model. The second reason is that current hardware (say, FPGA) technology is still not sufficient for realizing such a genetic breeder.Based on these considerations, we have focused our attention on two topics. One is to make the society model more theoretically sound and more hardware implementable. Another is to implement a simplified society model, and apply it to solve a simple pattern recognition probl … More em. These two topics were studied in parallel.As for the first part, we modified our source-code from C to C++, so that all objects are realized by software components, which can be easily modified and implemented by hard components in the future. We then studied the evaluation of the cooperative modules, which is the core problem to be solved in using the society model. Although we got some results through experiments, we are still not clear how to use CoopCEA more effectively in general. Another key point is how to decompose a large system into many modules. In general, we do not have to decompose the system explicitly in using the society model, because in general, the CoopCEAs can breed systems using yet-to-be-evolved components and yet-to-be-evolved structures. In practice, however, if we can decompose the system properly, the evolutioncan be greatly accelerated. For this purpose, we studied evolutionary learning of decision trees and nearestneighbor multilayer perceptrons. We have just got some important clues. Interesting results are expected to be reported in near future.As for second part, we implemented a simple nearest neithbor based neural network usint FPGA (Altera Flex10K100). It is connected through PCT bus to a host computer. All genetic operations are performed in the computer, and the evaluation part is performed on the FPGA chip. The chip, with minor revision,could be used for the simple Co-Evolutionary algorithm. This will be verified in the next step. Less
本研究的理论基础是赵目前提出的合作协同进化算法社会模型(CoopCEAs)。 CoopCEA是一种新的进化计算范式,许多研究人员认为它更适合解决大规模复杂问题。我们的最终目标是在硬件上实现社会模型,使实用系统能够以闪电般的速度进化。然而,这个目标在两年内实现起来太困难了。原因之一是社会模式仍有一些悬而未决的问题有待解决。第二个原因是目前的硬件(比如FPGA)技术还不足以实现这样的基因育种。基于这些考虑,我们将注意力集中在两个主题上。一是让社会模型理论上更加完善,硬件上更加可实现。另一个是实现一个简化的社会模型,并将其应用于解决简单的模式识别问题。这两个主题是并行研究的。对于第一部分,我们将源代码从C修改为C++,以便所有对象都由软件组件实现,将来可以很容易地由硬组件修改和实现。然后我们研究了合作模块的评估,这是使用社会模型要解决的核心问题。虽然我们通过实验得到了一些结果,但总体上我们仍然不清楚如何更有效地使用 CoopCEA。另一个关键点是如何将一个大系统分解成很多模块。一般来说,我们在使用社会模型时不必显式地分解系统,因为一般来说,CoopCEA 可以使用尚未进化的组件和尚未进化的结构来培育系统。但在实践中,如果我们能够对系统进行适当的分解,则可以大大加速演化。为此,我们研究了决策树和最近邻多层感知器的进化学习。我们刚刚得到了一些重要的线索。预计在不久的将来会报告有趣的结果。 至于第二部分,我们使用 FPGA (Altera Flex10K100) 实现了一个简单的基于最近邻的神经网络。它通过PCT总线连接到主机。所有遗传操作都在计算机中进行,评估部分在FPGA芯片上进行。该芯片经过较小的修改,可用于简单的协同进化算法。这将在下一步进行验证。较少的
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Okuyama, K.Kuroda, O.Hammami, Q.Zhao, and K.Saito: "GA Computation Acceleration by the combination of PC and FPGA through PCI Bus Interface"Proc. of 3^<rd> Biwako Workshop on System LSI, Shiga, Japan, Nov. 1999. 179-181 (1999)
Y.Okuyama、K.Kuroda、O.Hammami、Q.Zhao 和 K.Saito:“通过 PCI 总线接口结合 PC 和 FPGA 的 GA 计算加速”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Okuyama, K.Kuroda, O.Hammami, Q.Zhao, and K.Saito: "GA Computation Acceleration by the combination of PC and FPGA through PCl Bus Interface"Proc.of 3^<rd> Biwako Workshop on System LSI, Shiga, Japan, Nov.1999. 179-181 (1999)
Y.Okuyama、K.Kuroda、O.Hammami、Q.Zhao 和 K.Saito:“通过 PCl 总线接口结合 PC 和 FPGA 的 GA 计算加速”Proc.of 3^<rd> Biwako Workshop on System LSI
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Qiangfu Zhao: "A general framework for cooperative co-evolutionary algorithms : a society model"Proc.IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 1998. 57-62 (1998)
赵强福:“协作协同进化算法的通用框架:社会模型”Proc.IEEE 国际进化计算会议,阿拉斯加州安克雷奇,1998 年 5 月。 57-62 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
O.Hammami, K.Kuroda, Q.Zhao, and K.Saito: "CoEvolvable Hardware Platform for Automatic Hardware Design of Neural Networks"Proceedings of IEEE International Conference on Industrial Technology 2000, Goa, India, Jan. 2000. 509-514 (1999)
O.Hammami、K.Kuroda、Q.Zhao 和 K.Saito:“用于神经网络自动硬件设计的 CoEvolvable 硬件平台”2000 年 IEEE 国际工业技术会议论文集,印度果阿,2000 年 1 月。509-514
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Q.F.Zhao and M.Shirasaka: "A study on evolutionary design of binary decision trees"Proc.IEEE Congress on Evolutionary Computation,Washington D.C.,July 1999. (1999)
Q.F.Zhao 和 M.Shirasaka:“二元决策树的进化设计研究”Proc.IEEE 进化计算大会,华盛顿特区,1999 年 7 月。(1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAITO Kazuyuki其他文献
SAITO Kazuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAITO Kazuyuki', 18)}}的其他基金
Development of hybrid electrical scalpels combining microwave and high frequency current
微波与高频电流相结合的混合电手术刀的研制
- 批准号:
15K06010 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of radical thermal treatment system by use of indwelling metallic stent for bile duct carcinoma
胆管癌留置金属支架根治性热处理系统的研制
- 批准号:
24560397 - 财政年份:2012
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of thin microwave antenna inserted into endoscope for treatment of bile duct carcinoma
插入内窥镜治疗胆管癌的薄型微波天线的研制
- 批准号:
22760242 - 财政年份:2010
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study of a method to improve the productivity of mixed semiconductor manufacturing
提高混合半导体制造生产率方法的研究
- 批准号:
15560350 - 财政年份:2003
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monotone complete C^*-algebras and their automorphism groups
单调完备C^*-代数及其自同构群
- 批准号:
14540197 - 财政年份:2002
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gene Analysis of Cardiac ion channel genes on Sudden Infant Death Syndrome (SIDS) and Youth Sudden Death.
婴儿猝死综合症(SIDS)和青少年猝死的心脏离子通道基因的基因分析。
- 批准号:
11670427 - 财政年份:1999
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automorphisms of operator algebras and quantum measures
算子代数和量子测度的自同构
- 批准号:
10640199 - 财政年份:1998
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
- 批准号:
23K11120 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
- 批准号:
23K10454 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
- 批准号:
23H03451 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant