Automorphisms of operator algebras and quantum measures

算子代数和量子测度的自同构

基本信息

  • 批准号:
    10640199
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

We showed that when M is a von Neumann algebra with a non atomic center then an easy argument can be given to establish the boundedness of completely additive quantum measures ou M.In particular, if {n_j} is a sequence of positive integers and, for each j, A_j ia an abelian von Neumann algebra. with no minimal projections, and M_j is the algebra of n_j by n_j matrices then Σ_j【symmetry】(M_j 【cross product】A_j) is a von Neumann algebra not covered by the Dorofeev-Shertsnev theorem but one to which our results apply. By combining the results obtained here with their deep theorems (specialized to factors) the best possible result is obtained.Let M be a von Neumann algebra which does not have any direct summand isomorphic to the algebra of n by n matrices (for n an integer greater than 1). Then every completely additive quantum measure on M is bounded.2. Let B be any monotone complete C^*-algebra and let G be any locally compact separable Hausdorff group. We gave necessary and sufficient c … More onditions on the (B, G) for the existence of an action α of G on B as a group of *-automorphisms in such a way that (B, G, α) is an admissible dynamical system. Roughly, it is a monotone complete C^*-dynamical system (B, G, α) for which we can construct a monotone complete cross-product B x_α G with the canonical embedding of B.Furthermore, when G is abelian, we can define a dual action of G in such a way that the duality principle of Takesaki is valid.3. We constructed non-trivial examples of admissible monotone complete C^*-dynamic systems. In particular, we constructed such a system where G is the additive group R of real numbers or the Torus T, and where B is the Generic Dynamics Factor A.4. Let Out(A) = Aut(A)/Inn(A) be the outer automorphism group of A.Then, for each integer p with p 【greater than or equal】 2 and each complex number γ with γ^p=1, we constructed periodic automorphisms of A with Connes' outer conjugacy invariant (p, γ) of outer periodicity.5. For any countable discrete group G, it is shown that G can be isomorphically embedded in Out(A). Less
我们证明了当M是一个非原子中心的von Neumann代数时,可以给出一个简单的论证来建立M上完全可加量子测度的有界性.特别地,如果{n_j}是一个正整数序列,且对每个j,A_j是一个交换von Neumann代数.若M_j是n_j乘n_j矩阵的代数,则M_j(A_j)是一个不被Dorofeev-Shertsnev定理覆盖的von Neumann代数,但我们的结果适用于它。将所得结果与它们的深定理(专门针对因子)相结合,得到了可能的最佳结果:设M是一个vonNeumann代数,它没有任何与n × n矩阵代数(n为大于1的整数)同构的直和项。则M上的每一个完全可加量子测度都是有界的.设B是任意单调完备C^*-代数,G是任意局部紧可分Hausdorff群.我们给出了必要且充分的C ...更多信息 在(B,G)上存在G在B上的作用α作为一组 *-自同构的条件,使得(B,G,α)是一个容许动力系统。粗略地说,它是一个单调完全C^*-动力系统(B,G,α),对于它,我们可以构造一个单调完全叉积B x_α G与B的正则嵌入.我们构造了可容许单调完备C^*-动力系统的非平凡例子。特别地,我们构造了这样一个系统,其中G是真实的数的加法群R或环面T,并且其中B是通用动力学因子A。设Out(A)= Aut(A)/Inn(A)为A的外自同构群,对任意p ≥ 2的整数p和任意γ^p=1的复数γ,构造了A的具有Connes外共轭不变量(p,γ)的周期自同构.对任意可数离散群G,证明了G可以同构嵌入Out(A).少

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
斎藤和之(共著者J.D.M.ライト): "Outer automorphisms of the generic dynamics factor"Journal of Mathematical Analysis and Applications. 248. 41-68 (2000)
Kazuyuki Saito(合著者 J.D.M. Wright):“通用动力学因子的外自同构”《数学分析与应用杂志》248. 41-68 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
斎藤和之(共著者J.D.Mライト): "Dynamic Systems and duality for monotone complete C^*_- algebras" Quarterly Journal of Mathematics (Oxford). 49. 199-226 (1998)
Kazuyuki Saito(合著者 J.D.M Wright):“单调完备 C^*_- 代数的动态系统和对偶性”数学季刊(牛津)49. 199-226 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Saito and J.D.M.Wright: "Outer automorphisms of the generic dynamics factor"Journal of Mathematical Analysis and Applications. 248. 41-68 (2000)
K.Saito 和 J.D.M.Wright:“通用动力学因子的外自同构”数学分析与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
斎藤 和之(共著者J.D.Mライト): "Admissible dynamic systems for monotone complete C*-algebras"Quarterly Journal of Mathematics (Oxford). 50. 231-247 (1999)
Kazuyuki Saito(合著者 J.D.M Wright):“单调完备 C* 代数的可接受动态系统”季刊数学(牛津)50. 231-247 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
斎藤和之(共著者J.D.M.ラィト): "Admissible dynamic systems for monotone complete C^*-algebras"Quarterly Journal of Mathematics (Oxford). 50. 231-247 (1999)
Kazuyuki Saito(合著者 J.D.M. Wright):“单调完备 C^*-代数的可接受动态系统”数学季刊(牛津)50. 231-247 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAITO Kazuyuki其他文献

SAITO Kazuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAITO Kazuyuki', 18)}}的其他基金

Development of hybrid electrical scalpels combining microwave and high frequency current
微波与高频电流相结合的混合电手术刀的研制
  • 批准号:
    15K06010
  • 财政年份:
    2015
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of radical thermal treatment system by use of indwelling metallic stent for bile duct carcinoma
胆管癌留置金属支架根治性热处理系统的研制
  • 批准号:
    24560397
  • 财政年份:
    2012
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of thin microwave antenna inserted into endoscope for treatment of bile duct carcinoma
插入内窥镜治疗胆管癌的薄型微波天线的研制
  • 批准号:
    22760242
  • 财政年份:
    2010
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A study of a method to improve the productivity of mixed semiconductor manufacturing
提高混合半导体制造生产率方法的研究
  • 批准号:
    15560350
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monotone complete C^*-algebras and their automorphism groups
单调完备C^*-代数及其自同构群
  • 批准号:
    14540197
  • 财政年份:
    2002
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gene Analysis of Cardiac ion channel genes on Sudden Infant Death Syndrome (SIDS) and Youth Sudden Death.
婴儿猝死综合症(SIDS)和青少年猝死的心脏离子通道基因的基因分析。
  • 批准号:
    11670427
  • 财政年份:
    1999
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cooperative Coevolvable Hardware and Its Applications
协同协同演化硬件及其应用
  • 批准号:
    10650375
  • 财政年份:
    1998
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Continuing Grant
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
  • 批准号:
    2348633
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Almost Periodic von Neumann Algebras
近周期冯诺依曼代数
  • 批准号:
    2247047
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Rigidity for von Neumann Algebras and Applications
冯诺依曼代数及其应用的刚性
  • 批准号:
    2153805
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Quantifying Rigidity in von Neumann Algebras
量化冯·诺依曼代数中的刚性
  • 批准号:
    2055155
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Entropy Theory Methods in von Neumann Algebras
冯诺依曼代数中的熵理论方法
  • 批准号:
    2000105
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1853989
  • 财政年份:
    2019
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1854194
  • 财政年份:
    2019
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了