Advanced studies on eddy current testing using computational intelligence related to electromagnetic inverse problems

利用与电磁反演问题相关的计算智能进行涡流检测的高级研究

基本信息

项目摘要

Our mission is to develop feasible computational methods for quantitative nondestructive evaluation related to eddy current testing with the background knowledge of computational intelligence. During the period of the research, our efforts were directed to the developments of the following inverse solvers.(1) Shape recovering algorithm using the GP-based fuzzy inference systemA quantitative nondestructive evaluation in eddy current testing was proposed by using genetic programming (GP) and fuzzy inference system. GP is applied to extract and select effective features from a probe impedance trajectory. With the use of the extracted features, a fuzzy inference system could detect presence, position, and size of a defect of test sample.(2) Fast computational inverse solver using the multivariate splinesIn this method, the model output was directly reconstructed by parameter space with data sets of the forward solutions. Hence the sensitivities of the output least square problem could be e … More valuated very fast. As a result, the tremendous amounts of computational savings have been achieved using the proposed scheme.(3) Evolutionary computation and its application to QNDEA coevolutionary algorithm (CEA) was effectively used for a crack shape identification problem where the number of shapes is unknown. A CEA including two populations of candidate shapes and of candidate combination was proposed. Results were demonstrated that the proposed method makes it possible to obtain the number of cracks as well as to identify their shapes.(4) Shape identification using the SQUID based NDE systemA quantitative nondestructive evaluation of using superconducting quantum interference devices (SQUIDs) was developed for conducting materials with a depth-varying crack. A computational method based on the genetic algorithm was proposed for recovering internal defect profiles with SQUID data.Consequently, all computations were successfully tested for the JSAEM benchmark problems, including the masked tube samples with natural cracks. Less
我们的任务是利用计算智能的背景知识,为涡流检测相关的定量无损评估开发可行的计算方法。在研究期间,我们的工作是针对以下反求解器的发展。(1)基于遗传规划的模糊推理系统的形状恢复算法,提出了一种基于遗传规划和模糊推理系统的涡流检测无损定量评价方法。将GP应用于探头阻抗轨迹的有效特征提取和选择。利用提取的特征,模糊推理系统可以检测出测试样本缺陷的存在、位置和大小。(2)基于多元样条的快速计算反求解方法该方法利用正解的数据集直接通过参数空间重构模型输出。因此,输出最小二乘问题的灵敏度可以很快地计算出来。因此,使用所提出的方案可以节省大量的计算量。(3)进化计算及其在QNDEA协同进化算法(CEA)中的应用,有效地解决了形状数量未知的裂纹形状识别问题。提出了包含两个候选形状种群和候选组合种群的CEA。结果表明,所提出的方法可以获得裂纹的数量和识别裂纹的形状。(4)基于SQUID的无损检测系统的形状识别。提出了一种利用超导量子干涉器件(SQUID)对具有深度变化裂纹的导电材料进行定量无损评价的方法。提出了一种基于遗传算法的利用SQUID数据恢复内部缺陷轮廓的计算方法。因此,所有的计算都成功地测试了JSAEM基准问题,包括具有自然裂纹的掩膜管样品。少

项目成果

期刊论文数量(73)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小島史男: "パラメータ推定による高温超伝導量子干渉素子を用いた定量的非破壊評価法"日本機械学会論文集(C編). 64・622. 1957-1962 (1998)
小岛文雄:“通过参数估计使用高温超导量子干涉装置的定量无损评估方法”日本机械工程学会会刊(ed.C)1957-1962(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Fumio KOJIMA: "Identification of material flaws using HTc-SQUID by regularized inverse analysis (in Japanese)"Journal of JSAEM. 8-1. 9-15 (2000)
小岛文雄:“通过正则逆分析使用 HTc-SQUID 识别材料缺陷(日语)”JSAEM 杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Fumio KOJIMA: "A method for quantitative nondestructive evaluation using quantum interference devices (Second Report)"Trans. JSME. (to appear).
小岛文雄:“使用量子干涉装置进行定量无损评估的方法(第二次报告)”Trans。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shizuo YAMAMOTO: "Health Monitoring, (in Japanese)"Kyouritsu-Shuppann. 255 (1999)
Shizuo YAMAMOTO:“健康监测,(日语)”Kyouritsu-Shuppann。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Fumio KOJIMA: "Defect profiles identification of conducting materials using HTS-SQUID gradiometer with multiple frequencies"Review of Progress in Quantitative Nondestructive Evaluation. 20(掲載決定). (2001)
小岛文雄:“使用多频率 HTS-SQUID 梯度仪识别导电材料的缺陷轮廓”定量无损评估进展评论 20(决定出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOJIMA Fumio其他文献

Studies in Applied Electromagnetics and Mechanics, No. 37, Simulation and modeling related to computational science and robotics technology
应用电磁学和力学研究,第37期,与计算科学和机器人技术相关的仿真和建模
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KOJIMA Fumio;KOBAYASHI Futoshi;NAKAMOTO Hiroyuki(Editors)
  • 通讯作者:
    NAKAMOTO Hiroyuki(Editors)

KOJIMA Fumio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOJIMA Fumio', 18)}}的其他基金

Material Aging Diagnosis System using Magnetic sensing and Simulation
使用磁传感和模拟的材料老化诊断系统
  • 批准号:
    21560448
  • 财政年份:
    2009
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Nondestructive Evaluation System for Material Degradation Using Electromagnetic Inverse Analysis
电磁反演材料降解无损评价系统研究
  • 批准号:
    17560373
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Corrosion Shape Identification in Nuclear Reactor Tube Using Inverse Applied Electromagnetic Analysis
使用逆应用电磁分析识别核反应堆管的腐蚀形状
  • 批准号:
    07808055
  • 财政年份:
    1995
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Advancing Career and Technical Skills: Through the science of material, nondestructive testing and welding education.
提升职业和技术技能:通过材料科学、无损检测和焊接教育。
  • 批准号:
    2400736
  • 财政年份:
    2024
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
CREATE NSERC Innovative Program on NDT (NonDestructive Testing): oN DuTy!
创建 NSERC NDT(无损检测)创新计划:值班!
  • 批准号:
    496439-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Collaborative Research and Training Experience
Ultrasonic guided wave nondestructive testing systems for corrosion detection
用于腐蚀检测的超声波导波无损检测系统
  • 批准号:
    549523-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Alliance Grants
Next generation ultrasonic nondestructive testing methods and instruments
下一代超声波无损检测方法和仪器
  • 批准号:
    576710-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Alliance Grants
Enhancing Aviation Maintenance Technician Training with Nondestructive Testing Skills
加强航空维修技术人员无损检测技能培训
  • 批准号:
    2100113
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
CREATE NSERC Innovative Program on NDT (NonDestructive Testing): oN DuTy!
创建 NSERC NDT(无损检测)创新计划:值班!
  • 批准号:
    496439-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Collaborative Research and Training Experience
Ultrasonic guided wave nondestructive testing systems for corrosion detection
用于腐蚀检测的超声波导波无损检测系统
  • 批准号:
    549523-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Alliance Grants
Application of ultrasonic nondestructive testing methods to the mechanical properties of sea ice
超声波无损检测方法在海冰力学性能中的应用
  • 批准号:
    20K04955
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Collaborative Approach to Expanding Nondestructive Testing Education within a Welding Program
在焊接项目中扩展无损检测教育的协作方法
  • 批准号:
    2000831
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
CREATE NSERC Innovative Program on NDT (NonDestructive Testing): oN DuTy!
创建 NSERC NDT(无损检测)创新计划:值班!
  • 批准号:
    496439-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Collaborative Research and Training Experience
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了