A neural network model of the ideal observer and the statistical efficiency analysis
理想观察者的神经网络模型及统计效率分析
基本信息
- 批准号:11610070
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this study was as follows : First, we calculate a statistical efficiency which reflects relative discriminability of the human visual system to that of an ideal observer in order to investigate some properties in lower to higher processes of the visual system. Secondly, we construct a neural network model of the ideal observer by learning a statistically optimal responses in visual tasks. Furthermore, we artificially disorder the network with use of an algorithm and make it to simulate the human performance.We obtained the following results :(1) We calculated the statistical efficiency in the task of detecting symmetry patterns on the three dimensional (3D) corrugate surface with depth noise. With using these results, we could build a model about a surface construction and pattern detection in it.(2) We studied a problem about an integration of motion parallax with binocular disparity in the 3D slant perception with use of measurement of the statistical efficiency. We made clear the sampling differences between the motion parallax and binocular disparity information.(3) We studied a spatial and temporal summation of orientations of lines with use of measurements of the statical efficiency, and clarified the mechanism of the temporal sampling superiority over the spatial sampling.(4) We constructed an learning algorithm which was a basis of the neural network model of the ideal observer.(5) With use of the above algorithm, we built a double-steps neural network model of the ideal observer in the structure-from-motion task.(6) We made an algorithm which causes some disorder in the network and simulates a human performance.
本研究的目的如下:首先,我们计算了一个反映人类视觉系统相对于理想观察者的相对可区分性的统计效率,以研究视觉系统从低级到高级过程的一些性质。其次,通过学习视觉任务中的统计最优反应,构建了理想观察者的神经网络模型。得到了以下结果:(1)计算了在有深度噪声的三维波纹表面上检测对称图案的统计效率。利用这些结果,我们可以建立一个关于表面结构和其中的图案检测的模型。(2)利用统计效率的度量,研究了3D斜视感知中运动视差和双目视差的整合问题。明确了运动视差和双目视差信息之间的采样差异。(3)利用静态效率的测量方法研究了直线方向的时空总和,阐明了时间采样优于空间采样的机理。(4)构建了一种学习算法,作为理想观察者神经网络模型的基础。(5)利用上述算法,我们建立了理想观察者在运动结构任务中的两步神经网络模型。(6)提出了一种导致网络混乱的算法,并模拟了人类的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIGUCHI Akira其他文献
Does cross-modal aftereffect occur in variance perception?
差异知觉中是否会出现跨模态后效应?
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
UEDA Sachiyo;Yakushijin Reiko;ISHIGUCHI Akira - 通讯作者:
ISHIGUCHI Akira
IR活動に関するガイドラインの日米比較と今後の展望
日美IR活动方针比较及未来展望
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
UEDA Sachiyo;Gao Changhong;Yakushijin Reiko;ISHIGUCHI Akira;小湊 卓夫 - 通讯作者:
小湊 卓夫
Variance Discrimination of Empty time Interval: Comparison among auditory, visual and audio-visual condition
空时间间隔的方差判别:听觉、视觉和视听条件的比较
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
TOKITA Midori;ISHIGUCHI Akira - 通讯作者:
ISHIGUCHI Akira
Variance discrimination between orientation and size: Efficiencies in cross-task
方向和大小之间的方差辨别:跨任务的效率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
UEDA Sachiyo;Yakushijin Reiko;ISHIGUCHI Akira - 通讯作者:
ISHIGUCHI Akira
『移行する沖縄の教員世界―戦時体制から米軍占領下へ』
“冲绳的教师世界正在转型:从战时政权到美国军事占领”
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
UEDA Sachiyo;Yakushijin Reiko;ISHIGUCHI Akira;藤澤健一編 - 通讯作者:
藤澤健一編
ISHIGUCHI Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIGUCHI Akira', 18)}}的其他基金
Study of comon mechanism underlying variance discriminaton
方差判别共同机制研究
- 批准号:
15H03462 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Uncontrolable events and cognitive behavior
无法控制的事件和认知行为
- 批准号:
23330214 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Expertise of visual cognition and efficiency analysis
视觉认知与效率分析专业知识
- 批准号:
20530660 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic characteristics of numerical dominancy judgment in visual cognition
视觉认知中数字优势判断的动态特征
- 批准号:
14510094 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical efficiency approach to visual representation and object recognition
视觉表示和对象识别的统计效率方法
- 批准号:
09610072 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Properties in the Visual Decision Process
视觉决策过程中的统计特性
- 批准号:
07610069 - 财政年份:1995
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of integrating process of information passed through visual processes for stereo and motion with use of efficiency index.
利用效率指数对通过立体和运动视觉过程传递的信息进行整合处理的特性。
- 批准号:
05610058 - 财政年份:1993
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
- 批准号:
23K11120 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
- 批准号:
23K10454 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
- 批准号:
23H03451 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant