Syzygies for the defining ideal of projective varieties
Syzygies 定义射影簇的理想
基本信息
- 批准号:11640052
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research has been devoted to the study of free resolutions for defining ideals of projective varieties, especially to that of the Castelnuovo-Mumford regularities. The regularity is a basic invatiant which describes the minimal free resolutions and the degrees of the defining equations of the varieties. Let X ⊂ P^N_K be a projective variety over an algebraically closed field K. Then, by using an invariant k(X) which evaluates the deficiency of the Hartshorne-Rao module of the variety, we have known an upper bound on the regularity reg(X) 【less than or equal】[(deg(X)-1)/codim(X)] + max { k(X)・dim(X), 1}. In order to classify the equality case, we consider a generic hyperplane section of the projective curve satisfying reg(X) = [(deg(X)-1)/codim(X)] + 1. In case char(k) = 0, the uniform position principle yields an information on the configuration of the zero-dimensional scheme, and the set of points as a generic hyperplane section is contained in a rational normal curve. In case char(k) > 0, the correspodence between the monodromy group of the projective curve and the configuration of the points excludes the strange curves. Thus, by dimensional induction, the sharp bounds are only appeared in the case of divisors on a Hirzeburch surfaces if X is not arithmetically Cohen-Macaulay. Further I have conjectured with Le Tuan Hoa, by introducing a new invariant k^^〜(X), reg(X) 【less than or equal】[(deg(X) -1)/codim(X)] + max.{ k^^〜(X), 1}, and the bound is obtained to be effective for the divisor on the rational normal scroll.
我的研究一直致力于研究自由决议的定义理想的投射品种,特别是对的Castelnuovo-Mumford的。正则性是描述簇的定义方程的最小自由分解和次数的基本不变量。设X ∈ P^N_K是代数闭域K上的射影簇.然后,利用一个不变量k(X)来计算簇的Hartshorne-Rao模的亏度,我们得到了正则性reg(X)[小于或等于][(deg(X)-1)/codim(X)] + max { k(X)·dim(X),1}的一个上界.为了对等式情况进行分类,我们考虑满足reg(X)= [(deg(X)-1)/codim(X)] + 1的射影曲线的一般超平面部分。在char(k)= 0的情况下,一致位置原理给出了零维格式的结构信息,并且作为一般超平面截面的点集包含在有理法向曲线中。当char(k)> 0时,射影曲线的单值群与点的构形的对应关系排除了奇异曲线。因此,通过维数归纳,只有当X不是算术Cohen-Macaulay时,在Hirzeburch曲面上的因子的情况下才出现尖锐的界。此外,我通过引入一个新的不变量k^^(X),reg(X)[小于或等于][(deg(X)-1)/codim(X)] + max,与Le Tuan Hoa进行了讨论。{ k^^<$(X),1},并且得到了对有理数正规涡卷上的除数有效的界。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takashi Maeda: "Determinantal equations and singular loci of duals of Grassmannians"Ryukyu Math. J. 14. 17-40 (2001)
前田隆:“行列式方程和格拉斯曼对偶的奇异轨迹”琉球数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Maeda: "Generic G-linear maps"Ryukyu Math. J.13. 23-46 (2000)
前田隆:“通用 G 线性地图”琉球数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Maeda: "Standard P^3-bundles of exponent two on algebraic surfaces"Comm. Algebra. 28. 2853-2868 (2000)
Takashi Maeda:“代数曲面上的标准 P^3 指数二丛”Comm。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
E.Ballico,C.Miyazaki: "Generic hyperplane section of curves and an application to regularity bounds in positive characteristic"J.Pure Appl.Algebra. 155. 93-103 (2001)
E.Ballico,C.Miyazaki:“曲线的通用超平面部分及其在正特征正则性范围中的应用”J.Pure Appl.Algebra。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Maeda: "Standard IP^3-bundles of exponent two on algebraic surfaces"Comm.Algebra. (掲載予定).
Takashi Maeda:“代数曲面上的标准 IP^3 指数二丛”Comm.Algebra(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAZAKI Chikashi其他文献
MIYAZAKI Chikashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAZAKI Chikashi', 18)}}的其他基金
Castelnuovo-Mumford regularity for projective variety and its related topics
射影多样性的 Castelnuovo-Mumford 正则及其相关主题
- 批准号:
21540044 - 财政年份:2009
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Castelnuovo-Mumford regularity for projective varieties
射影簇的 Castelnuovo-Mumford 正则
- 批准号:
17540035 - 财政年份:2005
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Free resolutions of the coordinate rings of projective varieties
射影簇坐标环的自由分辨率
- 批准号:
14540036 - 财政年份:2002
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)