ALGEBRAIC-ANALYTICAL STUDY OF PSEUDO-DIFFERENTIAL AND CONVOLUTION ERUATIONS
伪微分和卷积方程的代数分析研究
基本信息
- 批准号:11640153
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aims of this research were as follows :[1] The algebraic-analytical study of convolution equations in the complex domains, using micro-local study of sheaves.[2] Study of the Fabry-Ehrenpreis-Kawai Theorem, applying the theory of analytical continuation of solutions to convolution equations.[3] The extension of the theory of the Cauchy problem for micro-differential equationts in the complex domains to the pseudo-differential case.For the problem [1] and [2], at first, we constructed good examples of convolution equations with elliptic codition in the several variables. And also, for the problem of the analytic continuation of the holomorphic solutions to the homogeneous convolution equation in the complex domains, we introduced its characteristic sets to be the natural extension of the case of usual constant coefficients linear partial differential equations and we could present the expicit form of the domains to which any solution is continued analytically, using the characteristic set. In particular, this resolves almost completely the problem of the analytic continuation to the infinite ordre differential-difference equations which are important examples of the functional-differential equaion. In the case of tube domains, one proved that, in a natural condition, the characteristic set coincides with the accumulating directions at infinity of the zeros of the symbol. However, for [3], we did not yet succeed to get an general theory. But we are now studying the problem using the sheaf theoritical study by means of inductive limits which is in the course of developpement.
本文的主要研究内容如下:[1]利用层的微观局部研究方法,对复域上卷积方程进行代数分析研究。[2]研究法布里-埃克塞特-卡瓦伊定理,将解的解析延拓理论应用于卷积方程。[3]将复域上微微分方程Cauchy问题的理论推广到伪微分情形,对于问题[1]和[2],我们首先构造了几个具有椭圆条件的多元卷积方程的好例子。对于复域上齐次卷积方程全纯解的解析延拓问题,我们引入了其特征集,将其作为常系数线性偏微分方程情形的自然推广,并利用特征集给出了任意解在其上解析延拓的域的显式形式.特别地,这几乎完全解决了泛函微分方程的重要例子--无穷阶微分差分方程的解析延拓问题。在管域的情况下,证明了在自然条件下,特征集与符号的零点在无穷远处的积累方向一致。然而,对于[3],我们还没有成功地得到一个普遍的理论。但我们目前正在利用处于发展过程中的归纳极限,用层理论研究这个问题。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.OKADA: "On the characteristics for convolution equations on tube domains"Journal of Mathematical Society of Japan. 52(3). 535-544 (2000)
Y.OKADA:“论管域上卷积方程的特征”日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.TAJIMA and Y.NAKAMURA: "Computing point residues for a shape basic case via differential operators"京都大学数理解析研究所講究録. 1158. 87-97 (2000)
S.TAJIMA 和 Y.NAKAMURA:“通过微分算子计算形状基本情况的点留数”京都大学数学科学研究所 Kokyuroku 1158. 87-97 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
HINO Y., MURAKAMI S., NAITO T.and M.V.MINN: "A generalization of processes and stabilities in abstract functional differential equations"Journal of Differential Equations. (to appear).
HINO Y.、MURAKAMI S.、NAITO T. 和 M.V.MINN:“抽象函数微分方程中过程和稳定性的概括”微分方程杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
TAJIMA S.and NAKAMURA Y.: "Multidimensional local residues and holonomic D-modules"Kyushu Journal of Mathematics. vol.54. 127-138 (2000)
TAJIMA S.和 NAKAMURA Y.:“多维局部留数和完整 D 模”九州数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. OKADA: "On distribution solutions of microdifferential equations with double involutive characteristics"Communication in PDE. 24・(7-8). 1419-1443 (1999)
Y. OKADA:“关于具有双对合特性的微分方程的分布解”PDE通讯24・(7-8) 1419-1443(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIMURA Ryuichi其他文献
Double commuting compressed shifts and generalized interpolation in the Hardy space over the bidisc
Bidisc 上的 Hardy 空间中的双通勤压缩移位和广义插值
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
中路 貴彦;長 宗雄;瀬戸 道生;ISHIMURA Ryuichi;中路 貴彦;中路 貴彦 - 通讯作者:
中路 貴彦
Endomorphisms of the Space of Higher Order Entire Functions and Infinite Order Differential Operators
高阶整函数与无穷阶微分算子空间的自同态
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
中路 貴彦;長 宗雄;瀬戸 道生;ISHIMURA Ryuichi - 通讯作者:
ISHIMURA Ryuichi
Operateurs pseudo-differentiels definis en un point
操作者伪微分定义在一个点上
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
中路 貴彦;長 宗雄;瀬戸 道生;ISHIMURA Ryuichi;中路 貴彦;中路 貴彦;ISHIMURA Ryuichi - 通讯作者:
ISHIMURA Ryuichi
ISHIMURA Ryuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIMURA Ryuichi', 18)}}的其他基金
Study of non-local differential equations and convolution equations in the complex domain
复域非局部微分方程和卷积方程的研究
- 批准号:
23540186 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic analytical study of non-local differential Equations and convolution equations
非局部微分方程和卷积方程的代数分析研究
- 批准号:
19540165 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic study of non-local differential equations and operational calculus
非局部微分方程和运算微积分的代数研究
- 批准号:
17540147 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic-analytical Study of non-local pseudo-differential equations in complex domains
复域非局部伪微分方程的代数解析研究
- 批准号:
15540155 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ALGEBRAIC ANALYTICAL STUDY OF SHEAVES AND INFINITE ORDRE DIFFERENTIAL EQUATIONS
滑轮和无限阶微分方程的代数分析研究
- 批准号:
13640154 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PSEUDO-DIFFERENTIAL EQUATIONS IN COMPLEX DOMAINS
复域中的伪微分方程
- 批准号:
09640155 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study of non-local differential equations and convolution equations in the complex domain
复域非局部微分方程和卷积方程的研究
- 批准号:
23540186 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic analytical study of non-local differential Equations and convolution equations
非局部微分方程和卷积方程的代数分析研究
- 批准号:
19540165 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)