Development of Flow Element Method (FLEM) for large deformation and flow problems of a continuum
针对连续体大变形和流动问题的流元法 (FLEM) 的开发
基本信息
- 批准号:11650506
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This report describes a practical formulation of Flow Element Method (FLEM)(Kiyama, H.et al., 1991) for large deformation analysis of continua. The basic idea of this numerical method has originated from the principle of Distinct Element Method (DEM)(Cundall, P.A., 1971). The equation of motion is the governing expression for displacements of nodes. The explicit time-marching scheme of DEM is adopted to solve the equation. This scheme enables to avoid large matrix computations. This procedure and numerical examples have been reported by the authors (Kiyama, H.et al., 1995).The so-called Jaumann rate of stress is adopted to formulate FLEM, in which the expression for rotation is derived as an explicit function of the vorticity. This stress rate has been widely used as one of objective stress rates. However, many investigators have observed unrealistic stress responses in simple shear simulation. Considerable effort has been expended on this subject.The relation between the vorticity and the deformation gradient in simple shear is studied. A two-dimensional elastic block subjected to end-displacement in a plain strain condition is also simulated by the FLEM.These are numerical studies on effects of the stress rate on deformations and states of stress.On the basis of this consideration, we introduce two coordinate systems to calculate correction terms in the stress rate. One is the global coordinate for the equation of motion. The other is a set of local coordinates, each origin of which is respectively attached to Gaussian points in an element and is located in the global system. The latter is meant to treat rotation of element. Finally, the practical formulation of FLEM is successfully established to simulate large shear deformation and flow problems.
该报告描述了流元法(FLEM)的实用公式(Kiyama,H.et al.,1991年)的连续体大变形分析。该数值方法的基本思想源自离散单元法(DEM)的原理(昆达尔,P.A.,1971年)。运动方程是节点位移的控制表达式。方程的求解采用离散元法的显式时间推进格式。该方案能够避免大的矩阵计算。作者已经报道了该过程和数值示例(Kiyama,H.et al.,1995).采用所谓的Jaumann应力率来表示FLEM,其中旋转表达式被导出为涡量的显式函数。该应力率已被广泛用作客观应力率之一。然而,许多研究人员在简单剪切模拟中观察到不切实际的应力响应。本文研究了简单剪切中涡量与变形梯度的关系。本文还用有限单元法模拟了平面应变条件下的二维弹性块体在端部位移作用下的变形,研究了应力率对变形和应力状态的影响,在此基础上,引入了两个坐标系来计算应力率中的修正项。一个是运动方程的全局坐标。另一种是一组局部坐标,其每个原点分别与一个单元中的高斯点相连,并位于全局系统中。后者旨在处理元素的旋转。最后,成功地建立了模拟大剪切变形和流动问题的FLEM实用列式。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中本崇,西村強,川崎了,木山英郎: "二種混合体の圧縮特性に関する解析的検討-礫岩の強度評価へのアプローチ-"土木学会岩盤力学シンポジウム講演論文集. 第30巻. 338-342 (2000)
Takashi Nakamoto、Tsuyoshi Nishimura、Ryo Kawasaki 和 Hideo Kiyama:“双组分混合物压缩特性的分析研究 - 砾岩强度评估方法”日本土木工程师学会岩石力学研讨会论文集第 30 卷。 . 338 -342 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西村強,木山英郎,藤村尚: "A practical formulation of flow element method for large deformation problems"Proceedings of 9^<th> Congress, International Society on Rock Mechanics,. Vol.1. 523-526 (1999)
Tsuyoshi Nishimura、Hideo Kiyama、Hisashi Fujimura:“大变形问题的流元方法的实用公式”,国际岩石力学学会第 9 届会议记录,第 1 卷(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsuyoshi Nishimura, Won-Yil Jang and Hideo Kiyama: "Numerical Modelling of Slip Instability Using Distinct Element Method with a Rate-Dependent Friction Law"Proceedings of Japan-Korea Joint Symposium on Rock Engineering. 157-162 (1999)
Tsuyoshi Nishimura、Won-Yil Jang 和 Hideo Kiyama:“使用离散元法和速率相关摩擦定律对滑移失稳进行数值模拟”日韩岩石工程联合研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Nakamoto, Tsuyoshi Nishimura, Satoru Kawasaki & Hideo Kiyama: "A numerical study on compression profiles of mixtures with Two different materials -An approach to evaluation of the strength of conglomerate-"Proceedings of the Symposium of Rock Mech
中本隆、西村刚、川崎悟
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西村強,木山英郎,藤村尚: "客観性に配慮した流動要素法の実用的定式化"地盤工学研究発表会講演集. 第34巻. 1169-1170 (1999)
Tsuyoshi Nishimura、Hideo Kiyama、Takashi Fujimura:“考虑客观性的流体单元方法的实用公式”岩土工程研究会议论文集,第 34 卷,1169-1170(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIYAMA Hideo其他文献
KIYAMA Hideo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIYAMA Hideo', 18)}}的其他基金
QUANTITATIVE EVALUATION OF THE BEARING CAPACITY OF SURROUNDING ROCK MASS AND THEORETICAL CONSTRUCTION OF THE CHARAVTERISTIC CURVE OF TUNNEL SUPPORT FOR NATM
新奥法围岩承载力定量评价及隧道支护特征曲线理论构建
- 批准号:
13650542 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A THEORETICAL AND PRACTICAL INVESTIGATION ON BEARING CHARACTERISTIC CURVES IN TUNNELLING -AN APPROACH TO QUANTITATIVE EVALUATION OF THE LOAD BEARING CAPACITY OF THE ROCK MASS-
隧道承载特性曲线的理论与实践研究——岩体承载能力定量评价方法——
- 批准号:
06555144 - 财政年份:1994
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Analysis for Granular Ground Using the Advanced DEM
使用高级 DEM 对粒状地面进行数值分析
- 批准号:
01550389 - 财政年份:1989
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Study of the Equation of Motion for Solid Particles in Turbulent Flows
湍流中固体颗粒运动方程的研究
- 批准号:
11650174 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dislocation Dynamics: the Equation of Motion of a Dislocation, Elastic Precursor Decay, Related Problems
位错动力学:位错运动方程、弹性前体衰变、相关问题
- 批准号:
8103204 - 财政年份:1981
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Dislocation Dynamics: the Equation of Motion of a Dislocation, Elastic Precursor Decay, Related Problems
位错动力学:位错运动方程、弹性前体衰变、相关问题
- 批准号:
8007766 - 财政年份:1980
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant