Automated diagnosis system for dental diseases using functions of the humanvisual system

利用人类视觉系统功能的牙科疾病自动诊断系统

基本信息

  • 批准号:
    11671870
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

The purpose of this project was to obtain the function of the human visual system from the average observer and apply it to the proximal caries diagnosis as a semi-automated system.1.Effects of the human visual system on the proximal caries diagnosisTwo types of recording media-the analogue film and the digital imaging films- were used for this experiment. The materials consisted of 27 third molar teeth extracted from young adolescents.Using these equipments and materials, a total of 594 digital images and 189 film radiographs were obtained. Seven oral radiologists evaluated one series at one time. Receiver operating characteristic (ROC) curves were obtained at each exposure of the recording system.In this experiment, it was concluded that radiation contrast registered by the recording medium determines the information required for the caries diagnosis. The effect of human visual system on the caries diagnosis was minimum.2.Semi-automated system for the proximal caries diagnosisUsing the results from the above experiment, we have developed the semi-automated system for the proximal caries diagnosis.In this system, the algorithm for the caries diagnosis is following :1) extraction of the contour of the proximal surface2) gray level measurement along the horizontal axis3) gray level profile along the proximal surface4) polynomial curve fitting to the profile5) extraction of the parameters from the function6) discrimination function for the caries using the above parametersDiagnostic accuracy obtained from the semi-automated system was comparable to that of the observers. Especially, it was most effective in the system using automated exposure compensation program.ConclusionThe present semi-automated system may be useful for the proximal caries diagnosis, especially in the system with automated exposure compensation.
本项目的目的是从普通观察者那里获取人类视觉系统的功能,并将其作为一个半自动系统应用于近端龋病诊断。1.人类视觉系统在近端龋病诊断中的作用本实验使用了两种记录介质-模拟胶片和数字成像胶片。材料包括27颗青少年拔除的第三磨牙,使用这些设备和材料,总共获得了594张数字图像和189张胶片。七位口腔放射科医生一次对一个系列进行了评估。在本实验中,记录介质记录的辐射对比度决定了龋病诊断所需的信息。利用上述实验结果,我们开发了近端龋病诊断的半自动系统。在该系统中,龋病诊断的算法如下:1)近端表面轮廓的提取;2)沿水平轴线的灰度测量;3)近端表面的灰度轮廓;4)多项式曲线拟合轮廓;5)从函数中提取参数6)利用上述参数对龋病的判别函数。结论本半自动系统可用于邻面龋病的诊断,尤其是在具有自动曝光补偿的系统中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAZU Toshiyuki其他文献

KAWAZU Toshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAZU Toshiyuki', 18)}}的其他基金

Interventional Radiology of salivary Gland Disease using balloon Catheter
使用球囊导管进行唾液腺疾病的介入放射学
  • 批准号:
    17592090
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of thermotherapy on metastatic cervical lymphnode of oral cancer
热疗对口腔癌颈部转移淋巴结的影响
  • 批准号:
    12671829
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Assessment of a Radiomics-Based Computer-Aided Diagnosis Tool for Cancer Risk Stratification of Pulmonary Nodules
基于放射组学的计算机辅助诊断工具对肺结节癌症风险分层的评估
  • 批准号:
    10644765
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
A study of computer aided diagnosis system of cervical cytology using deep learning.
基于深度学习的宫颈细胞学计算机辅助诊断系统的研究
  • 批准号:
    23K08849
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and sophistication of computer-aided diagnosis software based on the diagnostic imaging procedure of doctors
基于医生诊断成像流程的计算机辅助诊断软件的开发和完善
  • 批准号:
    22K15877
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interpretability and Fairness in Deep Learning for Computer-Aided Diagnosis
计算机辅助诊断深度学习的可解释性和公平性
  • 批准号:
    575945-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
  • 批准号:
    RGPIN-2020-05873
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
  • 批准号:
    RGPIN-2020-05873
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a general-purpose computer-aided diagnosis system using VAE that can be used for a small number of cases
使用VAE开发可用于少量病例的通用计算机辅助诊断系统
  • 批准号:
    21H03840
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
  • 批准号:
    RGPIN-2020-05873
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Computer-aided Diagnosis for Osteonecrosis of the jaw using Artificial Intelligence and Radiomics Analysis
利用人工智能和放射组学分析对颌骨坏死进行计算机辅助诊断
  • 批准号:
    20K20221
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Deep Convolutional Neural Network for Computer-Aided Diagnosis of Ischemic Heart Disease
缺血性心脏病计算机辅助诊断深度卷积神经网络的发展
  • 批准号:
    20K20233
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了