Automatic Cross-Layer Synthesis of High Performance, (Ultra-)Low Power Hardware Implementations from Data Flow Specifications by Integration of Emerging FeFET Technology

通过集成新兴 FeFET 技术,根据数据流规范自动跨层综合高性能、(超)低功耗硬件实现

基本信息

项目摘要

High throughput data and signal processing applications can be specified preferably by dataflow networks, as these naturally allow the exploitation of parallelism as well globally (at the level of a network of communicating actors) as locally at the actor level, e.g., by implementing each actor as a hardware circuit. Now, there exist a few system-level design approaches today to aid an algorithm designer in compiling a dataflow network to a set of processors or, alternatively, to synthesize the network directly in hardware for achieving high processing speeds. But embedded systems, particularly in the context of IoT applications, have additional requirements: Safe operation, even in an environment of intermittent power shortages, and in general (ultra-)low power requirements. Altogether, these requirements seem to be contradictory. Our proposed project named HiLoDa (High performance, (ultra-Low) power Dataflow) Nets tries to attack the obvious discrepancy and conflict in requirements by a) introducing, exploiting, and integrating for the first time emerging FeFET technology for the design of actor networks, i.e., by investigating and designing persistable FIFO-based memory units. b) In particular, circuit devices being able to operate in mixed volatile/non-volatile mode of operation shall be modeled, characterized, and designed. c) By combining the system-level concept of dataflow, which is based on self-scheduled activations of computations with emerging CMOS-compatible FeFET technology, inactive actors or even subnets shall inherit the capability of self-powering (down and wakeup). In addition, for a continuously safe mode of operation, a down-powering must also be triggered upon any intermittent shortage of power supply. Analogously, actors shall perform an auto-wakeup after recovery from a power shortage but also subject to fireability. HiLoDa Nets will be able to combine high clock-speed data processing of each synthesized actor circuit in power-on mode and automatic state retention using FeFET technology in power-off mode, self-triggered during time intervals of either data unavailability or power shortage. d) A fully automatic cross-layer synthesis from system-level dataflow specification to optimized circuit implementation involving FeFET devices shall be developed. This includes e) the DSE (design space exploration) of actor clusterings at the system level to explore individual power domains for the optimization of throughput, circuit cost, energy savings, and endurance. Finally, f) HiLoDa Nets shall be compared to conventional CMOS technology implementations with respect to energy consumption for applications such as spiking neural networks. Likewise, shutdown (backup) and recovery latencies from power shortages shall be evaluated and optimized.
高吞吐量数据和信号处理应用可优选地由数据流网络来指定,因为这些应用自然允许全局地(在通信参与者的网络级别)利用并行性,例如通过将每个参与者实现为硬件电路来在参与者级别本地地利用并行性。现在,现在存在一些系统级设计方法来帮助算法设计者将数据流网络编译到一组处理器,或者替代地,直接在硬件中综合网络以实现高处理速度。但嵌入式系统,特别是在物联网应用的背景下,有额外的要求:即使在间歇性电力短缺的环境下也能安全运行,以及一般(超)低电力要求。总的来说,这些要求似乎是相互矛盾的。我们提出的项目HiLoDa(High Performance,(超低)Power Dataflow)Nets试图通过a)引入、开发和集成新兴的FeFET技术来设计演员网络,即通过研究和设计基于FIFO的持久存储单元,来解决需求中明显的差异和冲突。B)具体而言,应对能够在易失性/非易失性混合运行模式下运行的电路器件进行建模、表征和设计。C)通过将基于自我调度计算激活的系统级数据流概念与新兴的兼容CMOS的FeFET技术相结合,非活动的执行器甚至是子网将继承自供电(停机和唤醒)的能力。此外,对于持续安全的操作模式,还必须在任何间歇性电源短缺时触发断电。类似地,演员应该在从电力短缺中恢复后执行自动唤醒,但也要受到火灾的影响。HiLoDa Nets将能够在通电模式下结合每个合成执行器电路的高时钟速度数据处理,以及在断电模式下使用FeFET技术自动保持状态,在数据不可用或电力短缺的时间间隔内自动触发。D)应开发从系统级数据流规范到涉及FeFET器件的优化电路实施的全自动跨层综合。这包括在系统级别对参与者集群进行DSE(设计空间探索),以探索单个电源域,以优化吞吐量、电路成本、节能和耐久性。最后,在诸如尖峰神经网络等应用的能量消耗方面,将HiLoDa Nets与传统的CMOS技术实现进行比较。同样,应评估和优化因电力短缺而导致的停机(备份)和恢复延迟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Joachim Falk其他文献

Dr.-Ing. Joachim Falk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

胰岛素样生长信号介导的肺巨噬细胞和上皮细胞cross-tolk通过核自噬参与慢性气道炎症形成的机制研究
  • 批准号:
    JCZRYB202500229
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于NLRP3炎性小体与自噬Cross-talk探讨心康冲剂干预心肌纤维化的机制研究
  • 批准号:
    2025JJ80174
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PKM2琥珀酰化修饰介导癌细胞与血小板间Cross-talk调控胆管癌侵袭转移的研究
  • 批准号:
    JCZRYB202500379
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于破骨-成骨细胞Cross-Talk探讨内固定物存留对关节软骨退变的影响及补肾强骨治法的科学内涵
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
三痹汤激活线粒体自噬影响免疫细胞Cross talk延缓椎间盘退变的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PGK1乙酰化修饰介导癌细胞与TAMs间Cross-talk调控胆囊癌EMT的研究
  • 批准号:
    82373032
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
线粒体ClpP激动剂通过铁死亡-免疫调控cross-talk治疗急性髓细胞白血病的机制研究
  • 批准号:
    82370171
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生长激素受体通过脂肪酸介导的肝脏-脂肪Cross-talk影响脂质内稳态的研究
  • 批准号:
    82370866
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于“cross-β折叠”结构形成理论解析面筋蛋白淀粉样纤维的形成机制
  • 批准号:
    32372365
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Cross-Layer Uncertainty-Aware Reinforcement Learning for Safe Autonomous Driving
用于安全自动驾驶的跨层不确定性感知强化学习
  • 批准号:
    EP/Y002644/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CSR: Small: Cross-Layer Solutions Enabling Instant Computing for Edge Intelligence Devices
CSR:小:跨层解决方案为边缘智能设备提供即时计算
  • 批准号:
    2247156
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cross-correlated optical responses of magnetic excitons in atomic-layer magnetoelectrics
原子层磁电中磁激子的互相关光学响应
  • 批准号:
    24K17019
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Taming Wireless Devices Cross-Layer Errors with Assistive Networked Edges
职业:利用辅助网络边缘解决无线设备跨层错误
  • 批准号:
    2312738
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
  • 批准号:
    2321492
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FuSe-TG: OpenBrain: Open-Source Cross-Layer Design of RRAM-based Neuromorphic Systems
FuSe-TG:OpenBrain:基于 RRAM 的神经形态系统的开源跨层设计
  • 批准号:
    2235440
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
  • 批准号:
    2303115
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了