プロテオーム時代におけるタンパク質立体構造の第一原理的予測

蛋白质组时代蛋白质3D结构的第一性原理预测

基本信息

  • 批准号:
    12208031
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 无数据
  • 项目状态:
    已结题

项目摘要

まず、我々が開発を続けている粗視化モデルのさらなる改良を行った.とくに、a)側鎖が1〜10程度のロータマー間を動くことができるようなモデル、b)2次構造予測サーバーの結果を読み込んで、2次構造形成傾向にバイアスをかける方法、及び、c)タンパク質の既知立体構造データベースを利用したエネルギーパラメータの改良を行った.従来から問題であったβシートの形成について、最終的な解決はいまだ達成していないが、b)の2次構造予測サーバーの利用によって、実用的にはある程度のβシート形成が可能になった.立体構造予測には、効率よい構造サンプリングが不可欠である.本年は、a)レプリカ交換法による高速構造サンプリング、b)高分子鎖の通り抜けをゆるすファントム鎖モデル、c)前2法を組み合わせたファントム鎖レプリカ交換法、を構築しその有効性をテストした.a)のレプリカ法は、並列計算に適しており、構造予測、平衡状態の物理量計算に多大な威力を発揮する.b)c)の方法は、ある程度の手がかりをつかんだものの、いまだに完全に機能するには至っていない.今後の詳細なチューニングが必要である.上記モデルを用いて、アミノ酸配列情報のみから立体構造予測のベンチマークテストを試みた.αヘリックスからなる短いタンパク質(アルブミン結合タンパク質ドメイン、ファージリプレッサーなど)では予測はある程度成功する.従来からの課題であったβシートを多く含むタンパク質(SH3ドメイン、protein Gなど)については、Architectureレベルで立体構造の特徴をつかむことは可能な場合が多いが、目標であるトポロジーレベルの予測は未だ難しいことが分かった.2年に一度行われているタンパク質の立体構造予測コンテストCASP4に参加し、我々の予測プログラムの達成度を他のグループと比較した.我々のプログラムには、局所的な分子の幾何学的パラメータの精度に難があることが判明した.一方、難しいトポロジーをもつタンパク質の大まかな形状では、他者と比べても、よい予測を与える場合があった.このコンテストでは、局所構造の一致が重要な採点基準になるので、ペプチドの幾何的情報のリファインメントが、今後の重要課題である.
We will open a rough training program to improve the quality of business. In the first half of the year, a) in the first half of the year, in the first half of the year, in the first place, and in the first place. In order to solve the problem, the most important problem is that the best solution is to make use of the current situation, and the best solution to the problem is to make the best use of the problem. A three-dimensional system is built, and the rate is very high. This year, a) high-speed high-speed communication method, b) high-molecular weight, high-speed, high-speed, high-speed Balance state physical quantity calculation. B) C) the method, the degree of pressure, the temperature, the balance, the physical quantity, the balance, the balance, the physical quantity, the balance, the physical quantity, the balance, the balance, the physical quantity, the balance, the In the future, we will make sure that we have to make sure that we have to pay for it. In the last part of the paper, we used the equipment to make sure that the three-dimensional system was built in the first place, and that the three-dimensional system was built in the first place. The results show that the degree of success is affected by the degree of success. This is the most important thing in this paper. We need to know that there is a lot of information in the system, such as SH3, protein G, protein G, and so on. In this case, we need to know that it is possible to have a lot of information. In order to improve the quality of your life, please do not know how to do it in the first half of the year. In the past two years, you have to pay attention to your participation in the CASP4 program, and we will tell you that you are not in the market. We need to know how to determine the accuracy of the molecular system of the bureau. On the one hand, there is a difference between the shape and the shape of the other, and the combination of the other and the other. We need to know how important we are, and how important we are in the future.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shoij Takada: "Simulating Protein Folding with Coarse Grained Models"Supplement of Progress of Theoretical Physics. 138,. 366-371 (2000)
Shoij Takada:“用粗粒度模型模拟蛋白质折叠”理论物理进展的补充。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高田彰二: "タンパク質フォールディングの物理化学"生物物理. 227. 20-24 (2000)
Shoji Takada:“蛋白质折叠的物理化学”生物物理学 227. 20-24 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shoji Takada: "Protein Folding Simulation With Solvent-Induced Force Field : Folding Pathway Ensemble of Three-Helix-Bundle Proteins"Proteins : Structure, Function, and Genetics. 42. 85-98 (2001)
Shoji Takada:“溶剂诱导力场的蛋白质折叠模拟:三螺旋束蛋白质的折叠途径整体”蛋白质:结构、功能和遗传学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高田彰二: "蛋白質の立体構造トポロジーとフォールディング"蛋白質核酸酵素. 46. 148-153 (2001)
Shoji Takada:“蛋白质三维结构拓扑和折叠”蛋白质核酸酶46。148-153(2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

高田 彰二其他文献

High-speed fluorescence microscopy for next-generation life science
用于下一代生命科学的高速荧光显微镜
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    篠 元輝;高田 彰二;Hideharu Mikami
  • 通讯作者:
    Hideharu Mikami
Comprehensive analysis of protein folding energy landscape by multicanonical Go-model molecular dynamics simulation
通过多规范Go模型分子动力学模拟全面分析蛋白质折叠能量景观
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊藤 真志保;高田 彰二
  • 通讯作者:
    高田 彰二
分子動力学シミュレーションによる緑色蛍光タンパク質断片のフォールディング機構の研究
利用分子动力学模拟研究绿色荧光蛋白片段的折叠机制
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊藤 真志保;高田 彰二
  • 通讯作者:
    高田 彰二
Properties of high-density non-equilibrium microplasma produced in a microgap by microwave excitation
微波激发微间隙中产生的高密度非平衡微等离子体的特性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岩下智史;櫻井彪;高田 彰二;T.Morishita;A. Kono
  • 通讯作者:
    A. Kono
粗視化シミュレーションによるヘテロクロマチン蛋白質1のヌクレオソームへの結合研究
使用粗粒度模拟研究异染色质蛋白 1 与核小体的结合
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    渡辺 周平;三島 優一;末武 勲;高田 彰二
  • 通讯作者:
    高田 彰二

高田 彰二的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('高田 彰二', 18)}}的其他基金

細胞内複雑環境下の相分離による生体分子凝縮体形成の生物物理
复杂细胞内环境中相分离导致生物分子凝聚态形成的生物物理学
  • 批准号:
    24K01991
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of next-generation coarse-grained simulations towards analysis of cellular-scale assembly
开发用于分析细胞规模组装的下一代粗粒度模拟
  • 批准号:
    21H02441
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
F型ATP合成酵素のFI複合体の構造、機能および選択性
F型ATP合酶FI复合物的结构、功能和选择性
  • 批准号:
    13F03705
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
タンパク質のフォールディング理論、立体構造予測、及び分子設計
蛋白质折叠理论、三维结构预测、分子设计
  • 批准号:
    15076207
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
プロテオーム時代におけるタンパク質立体構造の第一原理的予測
蛋白质组时代蛋白质3D结构的第一性原理预测
  • 批准号:
    14015220
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
プロテオーム時代におけるタンパク質立体構造の第一原理的予測
蛋白质组时代蛋白质3D结构的第一性原理预测
  • 批准号:
    13208018
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (C)
人工タンパク質の理論設計と合成
人工蛋白质的理论设计与合成
  • 批准号:
    12042255
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
人工タンパク質の理論設計と合成
人工蛋白质的理论设计与合成
  • 批准号:
    11166243
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)

相似海外基金

統合的時間分解構造解析で紐解く蛋白質フォールディング制御の分子基盤
通过集成时间分辨结构分析揭示蛋白质折叠控制的分子基础
  • 批准号:
    24K18087
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
再構成型翻訳・フォールディング連動システムの開発と関連する病気の解析
可重构平移/折叠联锁系统的研制及相关疾病分析
  • 批准号:
    23K23875
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
フォールディングを実現するオルガネラ環境:包括的測定による恒常性維持機構の解明
实现折叠的细胞器环境:通过综合测量阐明稳态机制
  • 批准号:
    24KJ1763
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
小胞体内蛋白質品質管理を制御するカルシウムイオン依存性フォールディング触媒の開発
开发一种钙离子依赖性折叠催化剂,可控制内质网中的蛋白质质量
  • 批准号:
    24KJ2003
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
リボソーム表面に捕捉されたリン酸化酵素フォールディング中間体の構造解明と創薬応用
核糖体表面捕获的激酶折叠中间体的结构阐明和药物发现应用
  • 批准号:
    24K01962
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
新型コロナウィルスgRNAの構造形成:gRNAのフォールディング仮説の証明と展開
新型冠状病毒gRNA的结构形成:gRNA折叠假说的证明与发展
  • 批准号:
    24K01983
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
蛋白質のフォールディング機構相転移の網羅的探索とその物理的駆動力の解明
全面探索蛋白质折叠机制的相变并阐明其物理驱动力
  • 批准号:
    22KJ1597
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
DNAナノ構造体を基盤とする酸化的フォールディング促進酵素の全体模倣
基于DNA纳米结构的氧化折叠促进酶的完全模拟
  • 批准号:
    23KJ0851
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
光応答性トポロジカル超分子ポリマーの創製
光响应拓扑超分子聚合物的制备
  • 批准号:
    22KJ0461
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a method to control protein structure by redox-active molecules including chaperone-like activity
开发通过氧化还原活性分子(包括分子伴侣样活性)控制蛋白质结构的方法
  • 批准号:
    23K04933
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了