Study on the K3 modular function and its arithmetic aspects
K3模函数及其算术问题的研究
基本信息
- 批准号:12640010
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(a) We made a study on the 3 dimensional congruent number problem and rational cuboid problems. We reformed the problem to the study of rational points on a certain type of K3 surfaces and showed the way of construction for some type of rational cuboid.(b) We studied the quotient of an orthogonal group by the level 2 principal congruence subgroup with respect to a certain typical indefinite quadratic form with 2 positive eigen values. We determined the structure of such quotients.c We made studies from various aspects on the family of K3 surfaces with a certain fixed structure of the Picard lattice of rank 14. In fact we obtained the following facts :(i) the explicit model for the member of such a family with a defining equation,(ii) the explicit moduli space for the periods, that is a bounded symmetric domain of type II,(iii) description of the differential equation of the periods, that is a holonomic system of rank 8,(iv) the moduli space can be embedded in the Siegel upper space of degree 8, it is characterized as a certain type of Shimura variety,(v) the above Shimura variety is induced from the starting Hodge structure of the K3 surface via the construction of Kuga-Satake.(d) We made an investigation on the Fuchsian differential equation coming from the family of punctured 1 dimensional tori. We obtained several observational results.
(1)研究了三维同余数问题和有理长方体问题。我们将问题转化为对一类K3曲面上有理点的研究,并给出了一类有理长方体的构造方法。(b)研究了一类具有2个正特征值的典型不定二次型的二阶主同余子群的正交群商。我们对具有一定固定结构的14阶Picard格的K3曲面族进行了多方面的研究。事实上,我们得到了以下事实:(i)具有定义方程的族成员的显式模型,(ii)周期的显式模空间,即ii型有界对称域,(iii)周期微分方程的描述,即8阶完整系统,(iv)模空间可以嵌入到8阶的Siegel上空间中,(v)上述志村变异是由K3表面的起始Hodge结构通过Kuga-Satake的构造诱发的。(d)研究了一维环面被刺破族的Fuchsian微分方程。我们得到了几个观测结果。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. Matsuda: "Katz correspondence for quasi-unipotent overconvergent isocrystals"Compositio Math.. (to appear).
S. Matsuda:“准单能超收敛等晶体的卡茨对应关系”Compositio Math..(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
(1) N.Narumiya, H.Shiga: "On certain rational cuboid problems"Nihonkai Mathematical Journal. 12. 75-88 (2001)
(1) N.Narumiya,H.Shiga:《论某些有理长方体问题》日本会数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Koike, H. Shiga, N. Takayama, T. Tsutsui: "Study on the family of K3 surfaces induced from the lattice (D_4)^3+<-2>+<2>"Int. J. Math.. vol. 12. 1049-1085 (2001)
K. Koike、H. Shiga、N. Takayama、T. Tsutsui:“从晶格 (D_4)^3 <-2> <2> 导出的 K3 曲面族的研究”Int.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. Narumiya, H. Shiga: "The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope"CMR Proceeding and Lecturenote. (to appear). (2001)
N. Narumiya、H. Shiga:“从最简单的 3 维自反多胞体导出的 K3 曲面族的镜像图”CMR 论文集和讲义。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koike, K., Shiga, H., Takayama, N., Tsutsui, T.: "Study on the family of K3 surfaces induced from the latltce(D_4)^3【symmetry】<-2>【symmetry】<2>"International Journal of Mathematics. 12. 1049-1085 (2001)
Koike, K.、Shiga, H.、Takayama, N.、Ttsutsui, T.:“关于由 latltce(D_4)^3 导出的 K3 曲面族的研究【对称性】<-2>【对称性】<2> “国际数学杂志。12。1049-1085(2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIGA Hironori其他文献
SHIGA Hironori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIGA Hironori', 18)}}的其他基金
Arithmetic aspects of Calabi-Yau surfaces and the hypergeometric system
卡拉比-丘曲面和超几何系统的算术方面
- 批准号:
23540061 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic research of hypergeometric differential equation and its Schwarz map
超几何微分方程及其Schwarz图的算术研究
- 批准号:
17540011 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the hypergeometric diffeential equations considering the application for the coding theory
考虑编码理论应用的超几何微分方程研究
- 批准号:
14540153 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Brill-Noeter theory for semi stable bundles on curves which are contained in a K3 surface and around the fields
K3 曲面和场周围的曲线上的半稳定丛的 Brill-Noeter 理论
- 批准号:
16K05101 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Correspondences of K3 surface via moduli of sheaves
K3 表面通过滑轮模量的对应关系
- 批准号:
EP/D061997/1 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Research Grant














{{item.name}}会员




