On the study of cohomology of Chevalley groups using the etale cohomology thoery

用etale上同调理论研究Chevalley群的上同调

基本信息

  • 批准号:
    12640025
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

The research project is to determine the cohomology of (the classifying space of) finite Chevalley groups, which consists of the following.(1) to construct, using the notion of algebraic geometry, the spectral sequence converging to the cohomology of (the classifying space of) finite Chevalley groups ;(2) to construct a complex giving the second term of the spectral sequence ;(3) to show the triviality of the spectral sequence.As for (1), we have succeeded in constructing the spectral sequence converging to the simplicial scheme which is the model of the Borel construction, by using the Deligne spectral sequence which is the algebraic version of the Eilenberg-Moore spectral sequence.Furthermore we use the Hochschild spectral sequence to show the triviality of the above spectral sequence, and thus we have succeeded in obtaining the spectral sequence mentioned in the above.As for (2), we have constructed concretely complexes giving the second term of the spectral sequence for all the cases of spinor type and of exceptional type.Finally, as for (3), we have some ideas to show the triviality of the spectral sequence by introducing some cohomology operations into the spectral sequence, which may need some more studies in the future.
该研究项目是为了确定有限尚利群体(分类空间的分类空间)的共同体,该组由以下组成。(1)使用代数几何形状的概念构造,将光谱序列融合到(分类)的(分类)有限雪佛尔群体的频谱;(2)构建谱的谱;(2)构建频谱(2)的谱图(3) sequence.As for (1), we have succeeded in constructing the spectral sequence converging to the simplicial scheme which is the model of the Borel construction, by using the Deligne spectral sequence which is the algebraic version of the Eilenberg-Moore spectral sequence.Furthermore we use the Hochschild spectral sequence to show the triviality of the above spectral sequence, and thus we have succeeded in obtaining the spectral上述序列(2)中,我们已经构建了具体的复合物,给出了所有纺纱类型和异常类型的光谱序列的第二项。在(最后,我们都有一些想法来表明光谱序列的琐事,通过将一些共同体学操作介绍到光谱序列中,这可能需要一些更多的研究,这可能需要一些更多的研究。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Kuribayashi: "The cohomology of a pull-back on K-formal spaces"Topology and its Applications. (to appear). (2002)
K. Kuribayashi:“K-形式空间上的回拉的上同调”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ikenaga, S.Nitta, I.Yoshioka: "On the extensions of single valued continuous and set valued usc maps"Math. J. Okayama Univ.. 43. (2001)
S.Ikenaga、S.Nitta、I.Yoshioka:“关于单值连续和集值 USC 映射的扩展”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D.Buhagiar, I.Yoshioka: "Sums and products of ultracomplete topological spaces"Topology and its Applications. (2002)
D.Buhagiar、I.Yoshioka:“超完备拓扑空间的和与积”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ikenaga, S.Nitta, I.Yoshioka: "On the extensions of single valued continuous and set valued usc maps"Math.J. Okayama Univ.. 43. (2001)
S.Ikenaga、S.Nitta、I.Yoshioka:“关于单值连续和集值 usc 映射的扩展”Math.J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D. Buhagiar-I. Yoshioka: "Sums and products of ultracomplete topological spaces"Topology and its Applications. (to appear). (2002)
D.布哈吉亚尔-I。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIMURA Mamoru其他文献

MIMURA Mamoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIMURA Mamoru', 18)}}的其他基金

Evaluation of mass-permeability of sand-gravel layers and its application to the prediction of long-term setlement of the reclaimed Pleistocene deposits
砂砾石层质量渗透率评价及其在再生更新世矿床长期沉降预测中的应用
  • 批准号:
    24560603
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the dynamic failure mechanism of a gravity caisson quay wall due to earthquake forces
地震力作用下重力沉箱码头墙动力破坏机理研究
  • 批准号:
    11555128
  • 财政年份:
    1999
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Development of finite element code for assessing large deformation problems with ALE
开发用于使用 ALE 评估大变形问题的有限元代码
  • 批准号:
    09650550
  • 财政年份:
    1997
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Examples of group cohomology
群上同调的例子
  • 批准号:
    580620-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
幾何多様体の変換群に関する共形不変量の構成と消滅による等長群の出現
通过关于几何流形变换群的共形不变量的构造和消失而出现等距群
  • 批准号:
    22K03319
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cohomology, group actions and spaces of representations
上同调、群作用和表示空间
  • 批准号:
    RGPIN-2015-04968
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomology, group actions and spaces of representations
上同调、群作用和表示空间
  • 批准号:
    RGPIN-2015-04968
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
The projective geometry of Zoll surfaces and the Cut locus on Finsler manifolds
Zoll 曲面的射影几何和 Finsler 流形上的切割轨迹
  • 批准号:
    20K03595
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了