CLASSIFICATION OF WEAK FANO MANIFOLDS WHICH ARE DIVISORS IN THE WEIGHTED PROJECTIVE SPACE BUNDLES OVER THE PROJECTIVE LINE
射影线上加权射影空间束中的弱 FANO 流形的分类
基本信息
- 批准号:12640048
- 负责人:
- 金额:$ 0.38万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research for several years about weak Fano threefolds tells us the following classification (I am in preparation for the paper titled "Weak Fano threefolds with del Pezzo fibrations"):Let V be a smooth weak Fano threefold whose anti-canonical model has only terminal singularities. Assume that V has an extremal ray of type D (the type having del Pezzo fibration) of degree d. Denote the number of deformation classes for degree d by N(d). Then, we have N(1)=2, N(2)=4, N(3)=7, N(4)=11, N(5)=11, N(8)=9, and N(9)=3, and can determine the structure of the general weak Fano threefold belonging to each deformation class.The problem for the case d=6 is open. The weak Fano threefold for the case d=2 can be regarded as a divisor in weighted projective space bundles. This point of view leads to the same classification as the previous one. See the paper "Weak Fano threefolds with del Pezzo fibration of degree two," Economics and Information Studies (working paper series in our faculty), 2001.This research studied the smooth weak Fano fourfold which is a divisors in weighted projective space bundles as the case of threefolds above. We obtained several examples in weak Fano fourfolds of this type. Although the result is not yet sufficient from the viewpoint of classification theory, a classification was obtained for the case that the fourfold is a divisor in projective space bundles. See the paper "Weak Fano fourfolds in the projective space bundle over the projective line", Economics and Information Studies, 2002.
几年来关于弱Fano三重性的研究告诉我们以下的分类(我正在准备论文“Weak Fano threefolds with del Pezzo fibrations”):设V是一个光滑的弱Fano三重性,其反正则模型只有终端奇点。假设V有一条D型极值射线(具有del Pezzo纤维化的类型),次数为d。用N(d)表示次数为d的变形类的数量。然后,我们有N(1)=2,N(2)=4,N(3)=7,N(4)=11,N(5)=11,N(8)=9,N(9)=3,可以确定属于每个变形类的一般弱Fano三重结构,d=6的情况是公开问题。在d=2的情形下,弱Fano三重性可以看作是加权射影空间丛中的一个因子.这个观点导致了与前一个相同的分类。参见论文“Weak Fano threefolds with del Pezzo fibration of degree two,”Economics and Information Studies(Working paper series in our faculty),2001.本研究研究了加权射影空间丛中作为因子的光滑弱Fano四重性,作为上述三重性的情形.我们在弱Fano四重中得到了几个例子。虽然从分类论的观点来看,这个结果还不够充分,但对于四重是射影空间丛中的因子的情形,得到了一个分类。参见论文“Weak Fano fourfolds in the projective space bundle over the projective line”,Economics and Information Studies,2002。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEUCHI Kiyohiko其他文献
TAKEUCHI Kiyohiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Research on singularities on an algebraic variety
代数簇的奇点研究
- 批准号:
16K05089 - 财政年份:2016
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
- 批准号:
15K04813 - 财政年份:2015
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resolution of singularities of an algebraic variety over an algebraically closed field in positive characteristic
正特征代数闭域上代数簇奇点的解析
- 批准号:
23740016 - 财政年份:2011
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of canonical divisors on higher dimensional algebraic variety
高维代数簇的正则因数研究
- 批准号:
22244002 - 财政年份:2010
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Deformations of curves on a higher dimensional algebraic variety and their obstructions
高维代数簇上曲线的变形及其阻碍
- 批准号:
21740029 - 财政年份:2009
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Lie algebra of differential oeprators on algebraic variety and its representations
代数簇微分算子的李代数及其表示
- 批准号:
09640030 - 财政年份:1997
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimates For Integer Points on Algebraic Variety by using Diophantine Approxiwatic
使用丢番图近似估计代数簇上的整数点
- 批准号:
06640082 - 财政年份:1994
- 资助金额:
$ 0.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety Over a Characteristic p Field
数学科学:特征 p 域上代数簇奇异性的解析
- 批准号:
8901892 - 财政年份:1989
- 资助金额:
$ 0.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety over a Field of Characteristic p.
数学科学:特征域上代数簇奇异性的解析 p。
- 批准号:
8700957 - 财政年份:1987
- 资助金额:
$ 0.38万 - 项目类别:
Continuing Grant
Real Algebraic Variety Structures on P.L. Manifolds
P.L. 上的实代数簇结构
- 批准号:
7701763 - 财政年份:1977
- 资助金额:
$ 0.38万 - 项目类别:
Standard Grant