Topological study on the structure of the group of homeomorphisms
同胚群结构的拓扑研究
基本信息
- 批准号:12640094
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. We considered the group of Lipschitz homeomorphisms of a Lipschitz manifold and showed that the group is locally contractible and perfect. As its application, we also showed that the group of equivariant Lipschitz homeomorphisms of a principal G-manifold is perfect when G is a compact Lie group. Furthermore we showed that the group of Lipschitz homeomorphisms of R^n leaving the origin fixed is perfect. As its application, we can show that the groups of Lipschitz homeomorphisms of a Lipschitz orbifold and of foliation preserving Lipschitz homeomorphisms of a compact Hausdorff C^1-foliated manifold are perfect.2. It is known that the equivariant diffeomorphism group of a principal G-manifold M is perfect. If M has at least two orbit types, then it is not true. We determined the first homology group of the equivariant diffeomorphism group of M when M is a G-manifold with codimension one orbit.3. We considered the group of foliation preserving Lipschitz homeomorphisms of a foliated manifold and computed the first homologies of the groups for codimension one C^2-foliations. We showed that if the foliation has no type D components and has only a finite number of type R components, then the group is perfect. Furthermore we showed that if the foliation has a type D component and the linearization map is a C^1-diffeomorphism, then the group is not perfect. But we showed that if the foliation has a type D component and the linearization map is not absolutely continuous, then the group is perfect. This phenomenon is different from that in topological case.
1.我们考虑了Lipschitz流形上的Lipschitz同胚群,并证明了这个群是局部可收缩的和完备的。作为应用,我们还证明了当G是紧李群时,主G-流形的等变Lipschitz同胚群是完备的。此外,我们还证明了R^n的原点不动的Lipschitz同胚群是完备的。作为应用,我们证明了Lipschitz轨道流形的Lipschitz同胚群和紧致Hausdorff C^1-叶流形的保叶Lipschitz同胚群是完备的.已知主G-流形M的等变同同态群是完备的。如果M至少有两种轨道类型,则它不为真。当M是余维为1轨道的G-流形时,我们确定了M的等变同同态群的第一同调群.我们考虑了叶化流形的保Lipschitz同胚的叶化群,并计算了余维为1的C^2-叶化群的第一同调。我们证明了如果叶理没有D型分支,只有有限个R型分支,则群是完全群。进一步证明了如果叶理有D型分支且线性化映射是C^1-单同态,则群不是完美群。但我们证明了如果叶理有D型分量且线性化映射不是绝对连续的,则群是完美的。这一现象与拓扑情况下的现象不同。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
阿部孝順, 福井和彦: "On the structure of the group of Lipschitz homeomorphisms and its subgroups"J. Math. Soc. Japan. 53-3. 501-511 (2001)
Takajun Abe,Kazuhiko Fukui:“关于 Lipschitz 同胚群及其子群的结构”J. Soc. 501-511。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大山淑之,谷山公規,山田修司: "Realization of Vassilier invariants by unknotting number one knots"Tokyo J.of Math.. (近刊).
Yoshiyuki Oyama、Kiminori Taniyama、Shuji Yamada:“通过解开第一结来实现 Vassilier 不变量”Tokyo J.of Math..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
河野進, 牛瀧文宏: "Geometry of finite spaces and equivariant finite spaces"Current Trends in Transformation Groups(K-theory Monograph Series). (近刊).
Susumu Kono,Fumihiro Ushitaki:“有限空间和等变有限空间的几何”变换群的当前趋势(K理论专着系列)(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
阿部孝順, 福井和彦: "On the structure of the group of equivariant diffeomorphisms of G-manifolds with codimension one orbit"Topology. 40. 1325-1337 (2001)
Takajun Abe、Kazuhiko Fukui:“关于余维一轨道的 G 流形的等变微分同胚群的结构”拓扑学 40。1325-1337 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Fukui and E. Hirai: "A note on the first homology of the group of polynomial automorphisms of the coordinate space"Sci. Math. Japonicae. (to appear).
K. Fukui 和 E. Hirai:“关于坐标空间多项式自同构群的第一同调性的注释”Sci。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKUI Kazuhiko其他文献
FUKUI Kazuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKUI Kazuhiko', 18)}}的其他基金
Study on Diffeomorphism Groups preserving a Geometric Structure
保持几何结构的微分同胚群的研究
- 批准号:
23540111 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Diffeomorphism Groups of Manifolds with Geometric Structures
几何结构流形微分同胚群的研究
- 批准号:
17540098 - 财政年份:2005
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Homeomorphism Group
同胚群研究
- 批准号:
14540093 - 财政年份:2002
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)