Numerical approach for bifurcation of nonlinear problem
非线性问题分岔的数值方法
基本信息
- 批准号:12640142
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this study is to confirm whether non-symmetric solutions exist or not on the bifurcation problem of the surface water waves and, if exist, to see their bifurcation structures. The existence of non-symmetric solutions has not yet been proved mathematically. J. A. Zufiria ('87, '88) gave non-symmetric solutions numerically, which are mode (1, 2, 3) waves in both cases of infinite and finite depth of fluid. However their non-symmetricities are so minute and their bifurcation structures are obscure. So we would like to investigate his results by our own algorithms.We carried out the following schemes :1. We continue to compute by modifying our programs, which we have used for the bifurcation problem of irrotational waves or rotational waves.2. If we fail in the above computation, we try to do another approach.Regarding 1. we have not yet obtained any non-symmetric solutions, but it is beforehand to conclude. We need much more strict and profound simulations since it is a very delicate problem.This year, we study mainly another approach of 2. It is to study the interfacial progressive wave problem that is a generalization of the surface wave problem. In the case of inter facial waves, it is proved that there exist triple bifurcation points of mode (l, m, n). It might be possible to interpret Zufiria's non-symmetric waves of mode (1, 3, 6) as the effect of the triple bifurcation of inter facial waves, because the surface wave problem is embedded in the interfacial problem. We programd codes to compute the interfacial wave problem and simulated some bifurcation structures.We have not yet obtained any non-symmetric solution by this approach. However it is our results to see some changes of bifurcation structure of inter facial waves as the key parameter varies. It would be interesting to study structures around the triple bifurcation and it is still our target.
本研究的目的是确定表面水波分支问题是否存在非对称解,如果存在,则观察其分支结构。非对称解的存在性尚未得到数学证明。J. A. Zufiria('87,'88)给出了非对称的数值解,在无限深和有限深两种情况下都是(1,2,3)型波。然而,它们的非线性度很小,分叉结构也不清楚。因此,我们想用我们自己的算法来研究他的结果。我们继续通过修改我们的程序来计算,我们已经使用了无旋波或有旋波的分叉问题。如果我们在上面的计算中失败了,我们尝试做另一种方法。我们还没有得到任何非对称解,但可以提前下结论。由于这是一个非常微妙的问题,我们需要更严格和更深入的模拟。研究界面行波问题是表面波问题的推广。在界面波的情况下,证明了存在(l,m,n)型的三重分歧点。由于表面波问题是嵌入在界面问题中的,因此可以将Zufiria的(1,3,6)型非对称波解释为界面波的三重分叉效应。我们编制了计算界面波问题的程序,并模拟了一些分叉结构,用这种方法还没有得到任何非对称解。然而,我们的结果看到一些变化的分歧结构的界面波的关键参数的变化。这将是有趣的研究周围的三重分歧的结构,它仍然是我们的目标。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Shoji: "Bifurcation of rotational water waves, FREE BOUNDARY PROBLEMS : Theory and Application II"GAKUTO International Series 19. 418-430 (2000)
M. Shoji:“旋转水波的分叉,自由边界问题:理论与应用 II”GAKUTO 国际系列 19. 418-430 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shoji: "Bifurcation of rotational water waves"GAKUTO International Series. 19. 418-430 (2000)
M.Shoji:“旋转水波的分叉”GAKUTO国际系列。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shoji: "Numerical solutions of the bifurcation problem of intefacial progressive water waves"the Natural Science Report of the Ochanomizu University. (to appear).
M.Shoji:“界面前进水波分叉问题的数值解”御茶水女子大学自然科学报告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Okamoto & M. Shoji: "The Mathematical Theory of Permanent Progressive Water-Waves"World Scientific. (2001)
H·冈本
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Okamoto, M.Shoji: "The Mathematical Theory of Permanent Progressive Water-Waves"World Scientific. 229 (2001)
H.Okamoto,M.Shoji:“永久渐进水波的数学理论”世界科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHOJI Mayumi其他文献
SHOJI Mayumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHOJI Mayumi', 18)}}的其他基金
Numerical analysis of rotational flows of two vortical layers
两个涡层旋转流的数值分析
- 批准号:
18K03429 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical approach for bifurcation of nonlinear problem
非线性问题分岔的数值方法
- 批准号:
14540140 - 财政年份:2002
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical approach for bifurcation of nonlinear problem
非线性问题分岔的数值方法
- 批准号:
09640295 - 财政年份:1997
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Using Monte Carlo Methods to Examine Solutions to Water Wave Problems
使用蒙特卡罗方法检查水波问题的解决方案
- 批准号:
574653-2022 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
University Undergraduate Student Research Awards
Role of modulating water wave groups in enhancing air-water fluxes.
调制水波群在增强空气-水通量中的作用。
- 批准号:
DP210102561 - 财政年份:2021
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Projects
Water wave metamaterials in the design of ocean wave energy converters
水波超材料在海浪能量转换器设计中的应用
- 批准号:
EP/V04740X/1 - 财政年份:2021
- 资助金额:
$ 0.96万 - 项目类别:
Research Grant
Nonlinear Analysis of Three-Dimensional Water-Wave Patterns via Exponential Asymptotics
通过指数渐近法对三维水波模式进行非线性分析
- 批准号:
2004589 - 财政年份:2020
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Mathematical Analysis of the Water Wave Motion
水波运动的数学分析
- 批准号:
1764112 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant
Modelling the growth and propagation of Tsunami waves with non-linear shallow water wave equations
用非线性浅水波浪方程模拟海啸波的增长和传播
- 批准号:
515672-2017 - 财政年份:2017
- 资助金额:
$ 0.96万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of The Fundamental Dynamics of Water Wave Effects on Turbulence for Environmental Applications
环境应用中水波对湍流影响的基本动力学研究
- 批准号:
1605080 - 财政年份:2016
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Dynamics of floating water-wave energy extraction devices
浮动水波能量提取装置的动力学
- 批准号:
EP/K008188/1 - 财政年份:2013
- 资助金额:
$ 0.96万 - 项目类别:
Research Grant
Various Aspects of the Water-Wave Problem
水波问题的各个方面
- 批准号:
1313049 - 财政年份:2013
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
MRI: Development of Pneumatic Water Wave Genesis, a versatile wavemaker for the UNC Joint Fluids Lab
MRI:开发气动水波起源,这是北卡罗来纳大学联合流体实验室的多功能造波机
- 批准号:
1229471 - 财政年份:2012
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant