Nonlinear Analysis of Three-Dimensional Water-Wave Patterns via Exponential Asymptotics
通过指数渐近法对三维水波模式进行非线性分析
基本信息
- 批准号:2004589
- 负责人:
- 金额:$ 34.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three-dimensional water-wave patterns due to moving surface and submerged sources, such as ships and submarines, or due to currents flowing over seamounts and underwater ridges, are familiar from everyday experience. Apart from their aesthetic appeal, these wave phenomena also are fundamental to applications in various scientific fields, including geophysical fluid dynamics, ship hydrodynamics, oceanography, and meteorology. This research project will develop a novel mathematical methodology for analyzing three-dimensional water-wave patterns. In contrast to all previous analytical treatments, the new approach will not be restricted to waves of small steepness and aims to explain theoretically several striking features revealed by recent numerical simulations of water waves induced by currents over uneven ocean bottom topography. The project will also involve graduate students in the research.The generation of steady three-dimensional (3D) water-wave patterns by moving surface and submerged sources is a fundamental topic of fluid dynamics with applications to geophysical fluid modeling, oceanography, and ship hydrodynamics. The usual way of tackling these problems analytically is based on the linearized water-wave equations, assuming infinitesimally small disturbances. Departing from such linear analysis, this project will devise an analytical (asymptotic) technique that will enable nonlinear treatment of steady 3D free-surface gravity wave patterns due to various types of wave sources. Motivation comes from the recent discovery (by the PI's group) of a nonlinear mechanism that controls the amplitude of 2D forced gravity waves for a broad range of flow conditions, limiting severely the validity of linear analysis. This mechanism depends on all orders of the disturbance amplitude (nonlinearity parameter) and can be captured by perturbation expansions that go beyond all orders in the nonlinearity parameter. This project will develop such a beyond-all-orders (exponential asymptotics) technique suitable for 3D wave patterns. This new methodology will be used to advance understanding of nonlinear effects in 3D forced gravity water waves in two distinct flow regimes: (i) waves on water of finite depth due to a stream over fully localized topography or due to a localized pressure patch moving on the free surface; and (ii) deep-water waves due to flow past a point source or doublet submerged at finite depth from the free surface or due to a pressure patch moving on the free surface. These problems model (i) oceanic flows over seamounts and underwater ridges as well as ship wakes in shallow water; and (ii) ship wave patterns on deep water. The asymptotic analysis will aim to explain theoretically several striking nonlinear features revealed by recent numerical simulations of these mathematical models and to shed light on novel nonlinear aspects that as yet have not been captured numerically.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于移动的水面和潜水源,如船舶和潜艇,或由于流经海山和水下海脊的水流,三维水波图案在日常经验中很常见。除了它们的美学吸引力外,这些波浪现象也是各种科学领域应用的基础,包括地球物理流体动力学、船舶流体动力学、海洋学和气象学。这项研究项目将开发一种新的数学方法来分析三维水波模式。与所有以前的分析处理方法不同,新方法将不限于小陡度的海浪,其目的是从理论上解释最近对不均匀海底地形上的洋流诱导的水波进行的数值模拟所揭示的几个显著特征。该项目还将吸引研究生参与研究。通过移动的表面和水下源产生稳定的三维(3D)水波模式是流体力学的一个基本课题,应用于地球物理流体模拟、海洋学和船舶流体动力学。解析地处理这些问题的通常方法是基于线性化的水波方程,假定有无限小的扰动。从这种线性分析出发,这个项目将设计出一种分析(渐近)技术,它将能够非线性处理由各种类型的波源引起的稳定的3D自由表面重力波模式。动力来自于(由Pi的团队)最近发现的一种非线性机制,该机制可以在大范围的流动条件下控制2D强迫重力波的幅度,这严重限制了线性分析的有效性。这种机制依赖于所有阶次的扰动幅度(非线性参数),并且可以通过超出非线性参数的所有阶数的微扰展开来捕获。该项目将开发一种适用于3D波形的超所有阶(指数渐近)技术。这种新的方法将被用来促进对两种不同流型下的三维强迫重力水波的非线性效应的理解:(I)由于完全局部化地形上的水流或由于在自由表面上移动的局部压力块而在有限深度的水中产生的波;(Ii)由于从自由表面经过有限深度处淹没的点源或二重流或由于压力块在自由表面上移动而产生的深水波。这些问题模拟(I)越过海山和水下海脊的海洋流动以及浅水中的船舶尾迹;以及(Ii)深水中的船舶波型。渐近分析旨在从理论上解释这些数学模型最近的数值模拟所揭示的几个显著的非线性特征,并阐明尚未从数字上捕捉到的新的非线性方面。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of internal gravity wave modes: from triad resonance to broadband instability
内部重力波模式的稳定性:从三重共振到宽带不稳定性
- DOI:10.1017/jfm.2023.265
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Akylas, T.R.;Kakoutas, Christos
- 通讯作者:Kakoutas, Christos
Nonlinear effects in steady radiating waves: An exponential asymptotics approach
稳定辐射波中的非线性效应:指数渐近方法
- DOI:10.1016/j.physd.2022.133272
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kataoka, Takeshi;Akylas, T.R.
- 通讯作者:Akylas, T.R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Triantaphyllos Akylas其他文献
Triantaphyllos Akylas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Triantaphyllos Akylas', 18)}}的其他基金
Three-Dimensional Nonlinear Internal Wave Beams: Mathematical Models and Laboratory Experiments
三维非线性内波梁:数学模型和实验室实验
- 批准号:
1512925 - 财政年份:2015
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Dynamics of Nonlinear Internal Wave Beams in Stratified Flows
层流中非线性内波束的动力学
- 批准号:
1107335 - 财政年份:2011
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Nonlinear Wave Propagation in Fluid Flows
流体中的非线性波传播
- 批准号:
0908122 - 财政年份:2009
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Nonlinear Wave Dynamics in Fluid Flows
流体流动中的非线性波动力学
- 批准号:
0604416 - 财政年份:2006
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
Nonlinear Wave Dynamics in Stratified Flows
层流中的非线性波动力学
- 批准号:
0305940 - 财政年份:2003
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Dynamics of Three-dimensional Nonlinear Internal Waves Over Topography
地形上三维非线性内波动力学
- 批准号:
0072145 - 财政年份:2000
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Coupling of Long Internal Waves with Small-Scale Disturbances
数学科学:长内波与小尺度扰动的非线性耦合
- 批准号:
9701967 - 财政年份:1997
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Assymmetric Nonlinear Waves in Fluid Flows
美法合作研究:流体流动中的非对称非线性波
- 批准号:
9512852 - 财政年份:1996
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Coupling of Long Internal Waves With Small-Scale Disturbances
数学科学:长内波与小尺度扰动的非线性耦合
- 批准号:
9404673 - 财政年份:1994
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Coupling of Solitary Internal Waves With Small- Scale Disturbances
数学科学:孤立内波与小尺度扰动的非线性耦合
- 批准号:
9202064 - 财政年份:1992
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
- 批准号:
2403992 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
MISTRAL a toolkit for dynaMic health Impact analysiS to predicT disability-Related costs in the Aging population based on three case studies of steeL-industry exposed areas in Europe
MISTRAL 动态健康影响分析工具包,基于欧洲钢铁行业暴露地区的三个案例研究,预测老龄化人口中与残疾相关的成本
- 批准号:
10063764 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
EU-Funded
Development of urodynamics analysis method using three-dimensional images
利用三维图像的尿动力学分析方法的开发
- 批准号:
23K08782 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and analysis of the three-dimensional solar plasma flows
三维太阳等离子体流的识别与分析
- 批准号:
2884318 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Studentship
Robust Three-Dimensional Pattern Recognition based on Object Oriented Data Analysis
基于面向对象数据分析的鲁棒三维模式识别
- 批准号:
23K16900 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of three-dimensional image analysis technology in the echographic diagnosis for developmental dysplasia of the hip.
三维图像分析技术在发育性髋关节发育不良超声诊断中的进展
- 批准号:
23K08671 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
- 批准号:
2307729 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
CAREER: Functional and evolutionary analysis of transposon-encoded, RNA-guided nucleases across the three domains
职业:跨三个域的转座子编码、RNA 引导的核酸酶的功能和进化分析
- 批准号:
2239685 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Continuing Grant
Investigation of the cause of computer elbow that occurs in visual display terminals workers using a three-dimensional motion analysis device
利用三维运动分析装置调查视觉显示终端工人电脑肘的原因
- 批准号:
23K03750 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional ultrastructural analysis of heterogeneous intercellular connections using correlative volume-imaging
使用相关体积成像对异质细胞间连接进行三维超微结构分析
- 批准号:
23K09132 - 财政年份:2023
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)