QUALITATIVE THEOR OF SOLUTION OF DIFFERENTIAL EQUATIONS WITH DELAYS

时滞微分方程解的定性理论

基本信息

  • 批准号:
    12640155
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Let B = B((-∞, 0] ; X), where X is a complete metric space. Consider functional differential equations with infinite delay.du/dt= Au(t) + L(t, u_t),where A is an infinitesimal generator of a compact semigroup of bounded lineat operators and u_t is an element of B defined by u_t(s) = u(t + s), s ∈ (-∞, 0].This phase space has two types, that is, one is a uniform fading memory space and the other is a fading memory space. Furthermore, if we consider an evolution equations which is a generalization of partial differential equations, above equation must be considered a functional partial differential equation with infinite delay. In this report, we have the following for the above equations.(i) Equivalent relationship between ρ-stabilities and BC-stabilities are shown.(ii) BC-total stability for a limiting equation implies that of the given euqation. BC-uniform asymptotic stabilituy also has the same property, under the uniqueness of the solution for the initial value problem.(iii) BC-total stability and BC-uniform asymtotic stability implies the existence of almost periodic solution of almost periodic euquations under the assumption of the existence of a bounded solution.
设B = B((-∞,0] ; X),其中X是完备度量空间.考虑无穷时滞泛函微分方程du/dt= Au(t)+ L(t,ut),其中A是有界线性算子紧半群的无穷小生成元,ut是B的元素,定义为ut(s)= u(t + s),s ∈(-∞,0].进一步地,如果我们考虑一个发展方程,它是偏微分方程的推广,则上述方程必须被认为是一个具有无穷时滞的泛函偏微分方程。在这份报告中,我们有以下的上述方程。(i)证明了ρ-稳定性与BC-稳定性之间的等价关系。(ii)极限方程的BC-全稳定性蕴涵着所给方程的BC-全稳定性。在初值问题解的唯一性条件下,BC-一致渐近稳定性也具有相同的性质。(iii)在概周期方程存在有界解的假设下,BC-全稳定性和BC-一致渐近稳定性意味着概周期方程的概周期解的存在性。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
日野義之, 村上悟, 内藤敏機, N.V.Minh: "A variation-of-constants formula for abstract functional differential equations in the phase space"Journal of Differential Eqations. 179. 336-355 (2002)
Yoshiyuki Hino、Satoru Murakami、Toshiki Naito、N.V.Minh:“相空间中抽象泛函微分方程的常数变分公式”微分方程杂志 179. 336-355 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
日野義之, 村上悟: "Total stability in abstract functional differential equations with infinite delay"Electronic J.of Qualitive Theory of Differential Equations. 13. 1-9 (2000)
Yoshiyuki Hino、Satoru Murakami:“具有无限延迟的抽象泛函微分方程的完全稳定性”Electronic J.of Qualitive Theory of Differential Equations 13. 1-9 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
日野義之,村上悟,内藤敏機,N.V.Minh: "a variation -of- constants formular for abstract function differential equations in the phase space"Joural of Differential Equations. (発表予定).
Yoshiyuki Hino、Satoru Murakami、Toshiki Naito、N.V. Minh:“相空间中抽象函数微分方程的常数变分公式”《微分方程杂志》(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yosiyuki Hino, Satoru Murakami, Toshiki Naito, Nguyen Van Minh: "A variation-of-constants formula for abstract functional differential equations in the phase space"J. Differential Equations. 179. 336-355 (2002)
Yosiyuki Hino、Satoru Murakami、Toshiki Naito、Nguyen Van Minh:“相空间中抽象泛函微分方程的常数变分公式”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yosiyuki Hino, Satoru Murakami: "Quasi-processes and stabilities in functional differential equations"Nonlinear Analysis. 47. 4025-4036 (2001)
Yosiyuki Hino、Satoru Murakami:“泛函微分方程中的拟过程和稳定性”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HINO Yoshiyuki其他文献

Stability properties of linear Voltera integrodifferential equations in a Banach space
Banach 空间中线性 Voltera 积分微分方程的稳定性性质

HINO Yoshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HINO Yoshiyuki', 18)}}的其他基金

Birkohoff theory for non-autonomous differential equations with delay
时滞非自治微分方程的 Birkohoff 理论
  • 批准号:
    16540139
  • 财政年份:
    2004
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Almost periodic solutions for functional differential equation
泛函微分方程近似周期解的存在性
  • 批准号:
    14540152
  • 财政年份:
    2002
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIASSIFICATIONS OF FONC TIONAL DIFFERENTIAL EQUATIONS BY PROCESSES
按过程分类的函数微分方程
  • 批准号:
    09640156
  • 财政年份:
    1997
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
  • 批准号:
    23K22120
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
  • 批准号:
    23K25777
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
  • 批准号:
    2330970
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
  • 批准号:
    2338345
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
  • 批准号:
    NE/Y001249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了