A research on a system of nonlinear partial differential equations describing phase transition phenomena

描述相变现象的非线性偏微分方程组的研究

基本信息

  • 批准号:
    12640166
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Several mathematicians and physicists already proposed some mathematical models consisting of partial differential equations in order to describe dynamics of shape memory alloy materials. In all of them they approximated the relationship between the strain and the stress by polynomials and functions and derived the models. However, in some experiments we know that the relationship is not a usual function and can be express by hysteresis operator, which depends on the historical data. Hence, in this research project we have proposed a new mathematical model including a hysteresis operator without polynomial approximation and studied the model by using the theory for evolution equations governed by time-dependent subdifferentials of convex functions on Hubert spaces. First, we considered the following problem. We already have known that the hysteresis operator is characterized by ordinary differential equations including the subdifferential operator of the indicator function. Then we added the ordinary differential equation to the system consisting of momentum balance law and internal energy balance law. A solution of this system may not satisfy the A smoothness condition so that we approximate the ordinary differential eauations by replacing the parabolic. Our first result is to prove the existence anu uniqueness theorem concerned witn sucn an approximated problem. Next, we applied the classical theory for parabolic equations to our system and showed the wellposedness of our problem without any approximations.
一些数学家和物理学家已经提出了一些由偏微分方程组成的数学模型来描述形状记忆合金材料的动力学行为。在所有这些方法中,他们用多项式和函数来近似应变和应力之间的关系,并导出了模型。然而,在一些实验中,我们知道,这种关系不是一个通常的函数,可以表示为滞后算子,这取决于历史数据。因此,在这个研究项目中,我们提出了一个新的数学模型,包括一个滞后算子没有多项式逼近,并研究了该模型,通过使用理论的发展方程的时间依赖的次微分的凸函数的Hubert空间。首先,我们考虑以下问题。我们已经知道,滞后算子的特征在于常微分方程,包括指示函数的次微分算子。然后在由动量平衡定律和内能平衡定律组成的系统中加入常微分方程。该方程组的解可能不满足A光滑条件,因此我们用抛物型方程代替常微分方程来逼近。我们的第一个结果是证明了这样一个近似问题的存在性和唯一性定理。接下来,我们将抛物方程的经典理论应用到我们的系统中,并在没有任何近似的情况下证明了我们问题的适定性。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KUBO, Masahiro: "Well-posedness and attractors of phase transition models with constraint"Nonlinear Anal. 47. 3207-3214 (2001)
KUBO,Masahiro:“具有约束的相变模型的适定性和吸引子”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
AIKI, Toyohiko: "Some models for shape memory alloys"Mathematical Aspects of Modelling Structure Formation Phenomena. 17. 144-162 (2001)
AIKI、Toyohiko:“形状记忆合金的一些模型”结构形成现象建模的数学方面。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
AIKI, Toyohiko: "Well-posedness of one-phase Stefan problems for sublinear heat equations"Journal of Nonlinear Analysis : Theory, Methods, and Applications. (印刷中).
AIKI、Toyohiko:“次线性热方程的单相 Stefan 问题的适定性”非线性分析杂志:理论、方法和应用(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ito,Aiki: "Inertial set for one-dimensional non-isothermal phase separation model"Adv. Math Sci Appl.. 11. 835-857 (2001)
Ito,Aiki:“一维非等温相分离模型的惯性集”Adv。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kenmochi,Nobuyuki: "Stability for a phase field model with the total variation functional as the interfacial energy"Nonlinear Anal.. to appear.
Kenmochi、Nobuyuki:“以总变差函数作为界面能的相场模型的稳定性”非线性分析.. 出现。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AIKI Toyohiko其他文献

AIKI Toyohiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AIKI Toyohiko', 18)}}的其他基金

Analysis for partial differential equations systems in non-homogeneous regions.
非齐次区域中的偏微分方程组分析。
  • 批准号:
    19K03572
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On development of analytical method for mathematical models including hysteresis and study of the suitability of the models
滞后现象数学模型解析方法的发展及模型适用性研究
  • 批准号:
    24540209
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical modeling for a nonlinear phenomena appearing engineering field and its analysis
工程领域出现的非线性现象的数学建模及其分析
  • 批准号:
    20540205
  • 财政年份:
    2008
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of a non-linear phenomenon mainly on the issue of shape-memory alloy
主要针对形状记忆合金问题的非线性现象分析
  • 批准号:
    16540146
  • 财政年份:
    2004
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear phenomena describing hysteresis operators
描述磁滞算子的非线性现象分析
  • 批准号:
    14540169
  • 财政年份:
    2002
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Uncovering the origin and theoretical design of shape memory alloys by machine learning and first-principles calculations
通过机器学习和第一性原理计算揭示形状记忆合金的起源和理论设计
  • 批准号:
    23K04422
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of cryogenic temperature shape memory alloys
低温形状记忆合金的研制
  • 批准号:
    22H01802
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating the Impact of Nanoscale Strain and Concentration Fields on Martensitic Transformations in NiTiHf-based Shape Memory Alloys
阐明纳米级应变和浓度场对 NiTiHf 基形状记忆合金马氏体相变的影响
  • 批准号:
    2226478
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Development of Mn-based reentrant shape memory alloys
锰基可凹形状记忆合金的研制
  • 批准号:
    22K18877
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
An investigation into the effect of composition and processing on the hysteresis width of NiTi shape memory alloys
NiTi形状记忆合金成分和加工对滞后宽度影响的研究
  • 批准号:
    2738194
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Studentship
Creation of Titanium Based High-Temperature Shape Memory Alloys Reinforced by NaCl-Type Carbides
氯化钠型碳化物增强钛基高温形状记忆合金的研制
  • 批准号:
    22K18907
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Hysteresis control for the new phase of Co-based reentrant shape memory alloys
新相钴基可重入形状记忆合金的磁滞控制
  • 批准号:
    22H01753
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fatigue Initiation Resistance in Shape Memory Alloys-Theory and Experiments
形状记忆合金的疲劳引发抗力——理论与实验
  • 批准号:
    2104971
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Understanding the interplay of precipitates and dislocations on the reversible martensitic transformation in cyclically actuated NiTiHf shape memory alloys
了解循环驱动 NiTiHf 形状记忆合金中析出物和位错对可逆马氏体相变的相互作用
  • 批准号:
    2004752
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Quantify the Seismic Response of Engineered Cementitious Composites Concrete Structures Reinforced with Superelastic Nickel-Titanium Shape Memory Alloys
量化超弹性镍钛形状记忆合金增强的工程水泥复合混凝土结构的地震响应
  • 批准号:
    552869-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了