Practical computational method of open channel unsteady flows including sub & super critical flows
明渠非定常流(包括亚临界流和超临界流)的实用计算方法
基本信息
- 批准号:12660215
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The explicit scheme, proposed by Moll (1998) using the Saint Venant equations in the conservation form, is advanced toward its establishment of a practical numerical method of computing coexisting subcritical and supercritical flows through analyzing how to incorporate calculations at boundaries. The scheme suppresses spurious oscillation due to numerical errors by incorporating the flux limiter in the easier calculation algorithm. Especially, the calculations at a connection between two channels with each different slope is theoretically analyzed. A set of the finite-dirrerence equations and boundary condition gives two bifurcated relations : one is valid for flows except for critical flows and the other valid for critical flows. With these the explicit scheme becomes hopeful method of analyzing unsteady flows where a control section, a hydraulic jump, and bore are given to examine the analysis on boundary calculations. In addition, connections between two channels of different cross sections such as circular or rectangular ones, where the flows change from ordinary to another ordinary flows, are dealt with to solve the finite-difference equations, the boundary conditions, and the momentum equation proper to the connection boundary. The some computational examples are given by calculations of unsteady flows including supercritical and subcrtical flows situations and/or a bore (translatory jump) in simple and rather complicated channel systems.
通过分析如何在边界处进行合并计算,将Moll(1998)提出的基于守恒型圣维南方程的显式格式推向建立亚临界和超临界共存流动的实用数值计算方法的方向。该方案通过在简单的计算算法中加入磁通限制器,抑制了由于数值误差引起的寄生振荡。特别是对两个不同坡度的渠道连接处的计算进行了理论分析。一组有限差分方程和边界条件给出了两个分叉关系:一个适用于除临界流以外的流,另一个适用于临界流。在给出控制断面、水跃和钻孔的情况下,显式格式成为分析非恒定流的有希望的方法,以检验边界计算的分析。此外,还讨论了两个不同截面的通道(如圆形或矩形通道)之间的连接,其中流动从普通流动变为另一种普通流动,以求解有限差分方程、边界条件和适合于连接边界的动量方程。文中给出了简单和复杂渠道系统中包括超临界和亚临界流动情况和(或)一个孔(突跃)在内的非定常流动的计算实例。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.SHIMADA: "Explicit Chang & Moll scheme of computing unsteady flows in open channels"8Th Int.Conf.on PRESSURE Surges. 451-468 (2000)
M.SHIMADA:“明确的张
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shimada, M., Togawa, K., H.Inagaki.: "Pressure Surges : Safe Design and Operation of Industrial Pipe System (Explicit Chang & Mill scheme of computing unsteady flows in open channels)"Professional Engineering Publishing, BHRG (Edited by A.Anderson). 626(4
Shimada, M.、Tokawa, K.、H.Inagaki.:“压力浪涌:工业管道系统的安全设计和操作(显式 Chang
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shimada M, Togawa K, Inagaki H: "Explicit Chang & Moll scheme of computing unsteady flows in open channels, Pressure Surges : Safe Design and Operation of Industrial Pipe System Edited by A. Anderson"rofessional Engineering Publishing, BHRG. 451-468 (2000
岛田 M、户川 K、稻垣 H:“显式张
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMADA Masashi其他文献
SHIMADA Masashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMADA Masashi', 18)}}的其他基金
Comprehensive error estimation of simulations of pipe flows with elastic water column model
弹性水柱模型管流模拟的综合误差估计
- 批准号:
21580293 - 财政年份:2009
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of Numerical Stability Analysis in Systems and Error Estimate on Water Hammer Analysis in Pipeline Systems
系统数值稳定性分析的构建及管道系统水锤分析的误差估计
- 批准号:
14360140 - 财政年份:2002
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Reasonable Numerical Methods For Predicting Complicated Hydraulic Appearance With Different Time and Space Scales
发展合理的数值方法来预测不同时间和空间尺度的复杂水力形态
- 批准号:
08456116 - 财政年份:1996
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 1.54万 - 项目类别:
Fellowship
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Projects
Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
- 批准号:
DP240102559 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Projects
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Early Career Researcher Award
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Studentship
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Fellowship
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
- 批准号:
EP/Z530657/1 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant