Integrated Study of Complex Analytic Structure
复杂解析结构的综合研究
基本信息
- 批准号:13304009
- 负责人:
- 金额:$ 37.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the first year 2001 of this research program Memorial Conference of Kiyoshi Oka's Centennial Birthday on Complex Analysis in Several Variables, Kyoto/Nara 2001, October 30-November 5,Kyoto/November 6-8,Nara, was held mainly under the sponsorship of the present fund. A number of celebrated mathematicians in complex analysis in several variables participated in it and it was a great outcome that the works on this subject in Japan showed the highest level of research. Through the exchanges of latest research information and ideas the approach of this program was reconfirmed. The results were so ample that the obtained information have played important roles all through this project, and the proceedings was published from Mathematical Society of Japan by the support of this research fund.The main subject of the present research program is "Complex Analytic Structure", especially Nevanlinna theory in several variables, pseudoconvex domains, complex manifold theory,..., etc. The present r … More esearch has been executed by investigators attached to the research themes joint with research cooperators. All the research results were summarized by the representative investigator.There are many excellent results obtained through the present project and the following are only partial ones : Establishing the second main theorem for holomorphic curves into semi-abelian varieties in the best form ; the second main theorem for meromorphic functions as targets best refined the Nevanlinna conjecture ; a construction of Kobayashi hyperbolic projective hypersurfaces satisfying the arithmetic finiteness property; uniformization theorems for C^κ×(C^*)^l, C^κ×B^l by automorphism groups ; the contraction theorem in the renormalization of one-dimensional complex dynamics ; further refinement of L^2-extension theorem of holomorphic functions in strongly pseudoconvex domains that have important applications ; (lowersemi-) continuity of plurigenera for family of algebraic varieties ; More advanced Kuranishi program ; Holder continuity of Dirichlet solutions for Holder continuous boundary functions and the non-existence of domains preserving Lipschitz continuity. Less
在该研究计划的第一年,2001年京都/奈良,2001年10月30日至11月5日,京都/奈良,大贺清史百年诞辰关于复变分析的纪念会议主要是在本基金的赞助下举行的。许多著名的复变数分析数学家参与了这项研究,日本对这一主题的研究成果达到了最高水平,这是一个伟大的结果。通过交流最新的研究信息和想法,这一方案的方法再次得到确认。本课题的主要研究课题是《复杂解析结构》,特别是多变量的奈万林纳理论、伪凸域理论、复流形理论等。目前的r…与研究合作者合作的研究主题的调查人员进行了更多的研究。本课题取得了许多优秀的结果,但仅有部分结果:建立了全纯曲线为最佳形式的半交换变种的第二主要定理;以亚纯函数为目标的第二主要定理最好地改进了内万林纳猜想;构造了满足算术有限性质的小林双曲射影超曲面;C^κ×(C^*)、L、C^κ×B^L的自同构群的一致化定理;一维复动力学的重整化中的压缩定理;具有重要应用的强伪凸域上全纯函数的L^2-扩张定理的进一步改进;代数族的(下半)连续性;更高级的Kuranishi规划;Holder连续边界函数Dirichlet解的Holder连续性;保持Lipschitz连续性的区域的不存在性。较少
项目成果
期刊论文数量(973)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Hahn-Banach extension theorem for entire functions of nuclear type
核型全部函数的Hahn-Banach扩展定理
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Akira SASAMOTO;Takayuki SUZUKI;Yoshihiro NISHIMURA;海津聰;藤間 昌一;笹本 明;Satoshi Kaizu;笹本明;川添良幸;Takahito Nishiyama;Takahiro Nishiyama;Takahiro Nishiyama;後藤 ミドリ;Takahiro Nishiyama;西原 賢;西山 高弘;西山 高弘;西原 賢
- 通讯作者:西原 賢
Deficiency for meromorphic solutions of the Schr"oder equations
施罗德方程亚纯解的不足
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Ishizaki;K.;N.Yanagihara
- 通讯作者:N.Yanagihara
Meromorphic functions on toroidal groups
环形群上的亚纯函数
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:H.Kazama;K.N.Kim;U.Umeno
- 通讯作者:U.Umeno
On holomorphic families of rational maps : Finiteness, Rigidity and Stability
关于有理映射的全纯族:有限性、刚性和稳定性
- DOI:
- 发表时间:2001
- 期刊:
- 影响因子:0
- 作者:Shiga;H.
- 通讯作者:H.
An arithmetic property of Shirosaki's hyperbolic projective hypersurface
- DOI:10.1515/form.2003.046
- 发表时间:2003
- 期刊:
- 影响因子:0.8
- 作者:J. Noguchi
- 通讯作者:J. Noguchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOGUCHI Junjiro其他文献
NOGUCHI Junjiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOGUCHI Junjiro', 18)}}的其他基金
Value distribution theory of analytic maps, Diophantine approximation and intersections of analytic cycles
解析图的值分布理论、丢番图近似和解析循环的交集
- 批准号:
23340029 - 财政年份:2011
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric Complex Analysis
几何复分析
- 批准号:
09304014 - 财政年份:1997
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
相似海外基金
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Comprehensive study of geometric complex analysis
几何复分析综合研究
- 批准号:
15H02057 - 财政年份:2015
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New development of geometric complex analysis
几何复形分析新进展
- 批准号:
22244008 - 财政年份:2010
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Geometric Complex Analysis
几何复分析的发展
- 批准号:
12440035 - 财政年份:2000
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric Complex Analysis
几何复分析
- 批准号:
09304014 - 财政年份:1997
- 资助金额:
$ 37.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Mathematical Sciences: Riemannian Geometry and Geometric Complex Analysis
数学科学:黎曼几何和几何复分析
- 批准号:
9306956 - 财政年份:1993
- 资助金额:
$ 37.86万 - 项目类别:
Continuing Grant
Geometric complex analysis of convex domains in cn
cn中凸域的几何复分析
- 批准号:
9319-1990 - 财政年份:1992
- 资助金额:
$ 37.86万 - 项目类别:
Discovery Grants Program - Individual
Geometric complex analysis of convex domains in cn
cn中凸域的几何复分析
- 批准号:
9319-1990 - 财政年份:1991
- 资助金额:
$ 37.86万 - 项目类别:
Discovery Grants Program - Individual