Development of Geometric Complex Analysis
几何复分析的发展
基本信息
- 批准号:12440035
- 负责人:
- 金额:$ 9.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In spite of a lot of work in complex analysis and conplex analytic geometry in the last century, there seem to remain unnoticed important questions in the basic theory of several complex variables. Relation between the extension and the sivision problems is very likely one of them. The purpose of this research project was to get a new viewpoint of relating extension and division problems on complex manifolds after the author's previous works on the L^2extention theorems for holomorphic functions. As a result we succeeded in improving a well known L^2division theory of H.Skoda. On the other hand, there was a progress concering Levi flat hypersurfaces : Let X be a complex manifold of dimension n and let M be a real hypersurface of X. M is called Levi flat if it locally separates X into two Stein domains i.e.if M is locally psendoconvex from both sides. In recent works of Lins-Nets and Ohsawa, it was proved that complex projective space of dimension n contains no compact real analytic Levi flat hypersurfaces if n 【greater than or equal】 2. It was extended in a joint work with K.Matsumoto by studying the geometry of Levi flat hypersurfaces in complex tori. Unlike the case of projective spaces, tori contain infinitely many compact Levi flat hypersurfaces. We determined all such jypersurfaces under the assumption of real analyticity when the dimension of tori is 2.
尽管上个世纪在复分析和复解析几何方面做了大量的工作,但在多复变基本理论中似乎仍有一些未被注意的重要问题。可拓学与规划的关系问题很可能就是其中之一。本研究的目的是在全纯函数的L^2扩张定理的基础上,对复流形上的扩张与除问题的关系提出一个新的观点。结果,我们成功地改进了著名的H. Skoda的L^2分裂理论。另一方面,关于Levi平坦超曲面的研究也有了新的进展:设X是n维复流形,M是X的真实的超曲面。M称为Levi平坦的,如果它局部地将X分成两个Stein域,即如果M从两侧局部伪凸。在Lins-Nets和Ohsawa最近的工作中,证明了当n [大于或等于] 2时,n维复射影空间不包含紧的真实的解析Levi平坦超曲面.它是延长在一个联合工作与K.松本通过研究几何列维平坦超曲面在复杂的环面。与射影空间不同的是,环面包含无穷多个紧致Levi平坦超曲面。当环面的维数为2时,我们在真实的解析性假设下确定了所有这样的超曲面。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marjatta Naatanen, Toshihoro Nakanishi: "Areas of two-dimensional moduli spaces"Proc. Amer. Math. Soc.. 129. 3241-3252 (2001)
Marjatta Naatanen、Toshihoro Nakanishi:“二维模空间的区域”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Klas Diederich and Takeo Ohsawa: "On certain existence questions for pseudoconvex hypersurpaces in complex manifolds"Mathematische Annalen.. (to appear).
Klas Diederich 和 Takeo Ohsawa:“关于复流形中伪凸超超的某些存在性问题”Mathematische Annalen..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuko Matsumoto, T.Ohsawa: "On the real analytic Levi flat hypersurfaces in complex tori of dimension two"Ann. de l'Inst. Fourier. (to appear).
Kazuko Matsumoto,T.Ohsawa:“关于二维复杂环面中的真实解析 Levi 平面超曲面”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeo Ohsawa: "A precise L^2 division theorem"Festschrift for H.Gravert. (to appear).
Takeo Ohsawa:“精确的 L^2 除法定理”H.Gravert 的 Festschrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeo Ohsawa: "Erratum to "On the extension of L^2 holomorphic functions V -Effects of generalization""Nagoya Mathematical Journal. 163. 229-229 (2001)
Takeo Ohsawa:“《关于 L^2 全纯函数 V 的扩展 - 泛化的影响》的勘误”《名古屋数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHSAWA Takeo其他文献
OHSAWA Takeo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHSAWA Takeo', 18)}}的其他基金
Low-dimensional Electronic Order Formed at Artificial Perovskite Titanate Interfaces
人工钙钛矿钛酸盐界面形成的低维电子秩序
- 批准号:
22760021 - 财政年份:2010
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Global complex analysis - around L^2 holomorphic functions
全局复分析——围绕L^2全纯函数
- 批准号:
14340041 - 财政年份:2002
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Complex analysis of Bergman spaces and α-cohomology
Bergman 空间和 α-上同调的复分析
- 批准号:
10440041 - 财政年份:1998
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
COMPLEX ANALYSIS BY THE L METHOD
L 法的复杂分析
- 批准号:
08640193 - 财政年份:1996
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
複素多様体上の作用素に付随した不変量の解析
复流形上与算子相关的不变量分析
- 批准号:
04452009 - 财政年份:1992
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 9.79万 - 项目类别:
ARC Future Fellowships
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
- 批准号:
2345225 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Standard Grant
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
- 批准号:
23H01173 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
- 批准号:
23H01078 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
- 批准号:
23K03397 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a dietary estimation equation MEMO, using microdata to estimate nutrient intake from sources other than meals
开发饮食估计方程 MEMO,使用微观数据来估计膳食以外来源的营养摄入量
- 批准号:
23K12696 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
- 批准号:
23K17749 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
- 批准号:
2327836 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Continuing Grant