Research on higher dimensional polyhedra and operads
高维多面体与运算体的研究
基本信息
- 批准号:13640080
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The summary of reserch results is as follows.1. We study conditions for mod p finite H-spaces to be quasi p-regular, and we give a generalization to the theorem of Kumpel on p-regulraity. Our result includes results by Harper, McClearly and Wilkerson.2. We define unstable p-th order mod p cohomology operations for odd primes p. Then, by using the operations we show that there are no H-spaces with certain cohomology.3. Williams gave a definition of higher order homotopy commutativity of the multiplication on associative H-spaces. We generalize his definition to higher homotopy assocative H-spaces. Then, by using this definition we give the mod p torus theorem for H-spaces with finitely generated cohomology.4. We show that there is no even degree generators except for degree eight and twenty in the mod 3 cohomology of finite H-spaces. We also determine the cohomology strucre of them as algebras.5. We consider the inbedding of an An-space X to its loop space of the projective n-1-space ΩP_<n-1>X. Then we study relations between an A_<n-1>-cohomology class x∈H^*(X;F) and its lift x^^^∈H^*(ΩP_<n-1>X;F), where F is a field.6. It is well known that if a map f: X → Y between H-spaces is an H-map then the map induces a map between their projective planes. Moreover, it is also known that if Y is homotopy associative then the converse holds. We show that the assumption of homotopy associativity is necessary in showing the converse. We also generalize the result to the case of A_n-spaces.7. It is proved that the moduli space of a punctured Rieman sphere has cellular decomposition. We consider a decomposition of the associahedron by using a homotopy theoretical property, and then by using the decomposition we construct a handle decomposition of the moduli space which is a dual decomposition of the original decomposition.
研究结果总结如下:1。研究了模p有限h空间是拟p正则的条件,并推广了Kumpel关于p正则的定理。我们的结果包括Harper, mcclear和wilkerson的结果。定义了奇数素数p的不稳定p阶模p上同调运算,并利用这些运算证明了不存在具有一定上同调的h空间。Williams给出了结合h空间上乘法的高阶同伦交换性的定义。我们将其定义推广到高同伦关联h空间。然后,利用这个定义,给出了有限上同调h空间的模p环面定理。证明了在有限h空间的模3上同调中,除了8次和20次外没有偶数次产生子。并确定了它们作为代数的上同调结构。我们考虑一个an空间X嵌入到它的n-1射影空间ΩP_<n-1>X的循环空间。然后研究了A_<n-1>-上同类x∈H^*(x;F)与它的升力x^^∈H^*(ΩP_<n-1> x;F)之间的关系,其中F是一个域。众所周知,如果在h空间之间的映射f: X→Y是一个h映射,那么该映射在它们的投影平面之间会产生一个映射。此外,我们还知道,如果Y是同伦结合的,则反之成立。我们证明了同伦结合性的假设是证明逆性的必要条件。我们也将结果推广到a_n空间的情况。证明了穿孔Rieman球的模空间具有细胞分解性。利用同伦的理论性质考虑了共轭面体的分解,然后利用该分解构造了模空间的柄分解,该柄分解是原分解的对偶分解。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Kamiya, K.Shimomura: "The Picard group on E(2)-localized category"Contemporary Math.. (印刷中).
Y.Kamiya、K.Shimomura:“E(2) 本地化类别的皮卡德小组”当代数学..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Hemmi: "H-spaces as direct product factors of loop spaces"Topology and its Applications. (印刷中).
Y. Hemmi:“H 空间作为循环空间的直接乘积因子”拓扑及其应用(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Kawamoto: "Higher homotopy commutativity of H-spaces with finitely generated co-homology"Pacific J. Math.. 204. 145-161 (2002)
Y.Kawamoto:“具有有限生成同调性的 H 空间的更高同伦交换性”Pacific J. Math.. 204. 145-161 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Morisugi and J. Mukai: "The Whitehead square of a lift of the Hopf map to a mod 2 Moore space"J. Math. Kyoto Univ.. Vol. 42. 331-336 (2002)
K. Morisugi 和 J. Mukai:“Hopf 升力的 Whitehead 平方映射到 mod 2 摩尔空间”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Shimomura, X.Wang: "The homotopy groups π_*(L_2S^0) at the prime 3"Topology. (印刷中).
K.Shimomura、X.Wang:“素数 3 处的同伦群 π_*(L_2S^0)”拓扑(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HEMMI Yutaka其他文献
HEMMI Yutaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HEMMI Yutaka', 18)}}的其他基金
Study of Hopf spaces by using higher order cohomology operations
使用高阶上同调运算研究 Hopf 空间
- 批准号:
23540093 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Hopf spaces and p-compact groups
Hopf空间和p-紧群的研究
- 批准号:
20540080 - 财政年份:2008
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the higher homotopy commutative Hopf spaees and its application to the higher category
高同伦交换Hopf spees的研究及其在高范畴中的应用
- 批准号:
17540083 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of the cohomology rings of finite Hopf spaces
有限Hopf空间上同调环的分类
- 批准号:
11640083 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hopf spaces and higher homotopy
Hopf 空间和更高同伦
- 批准号:
09640117 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)