Galois connection in mathematical clone theory
数学克隆理论中的伽罗瓦联系
基本信息
- 批准号:13640106
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For a set A, a clone on A is a set of multi-variable functions which is closed under composition. Denote by L_A the set of all clones on A. In this reseach, for the set M_A of all monoids consisting of unary functions on A, we considered a naturally defined Galois connection between M_A and L_A. For a monoid M, the centralizer M^* of M is the set of all multi-variable functions which 'commutes' with every unary function in M.1. <Some fundamental properties of the Galois connection> : (i) We showed that all centralizers of monoids are contained in some particular maximal clones. (ii) Also, we showed that for every pair of distinct monoids their centralizers are always distinct.2. <Characterization of the centralizers of the symmetric group and the alternating group> : We established the characterization of the centralizers of both the symmetric group and the alternating group, the latter being more complex than the former.3. <Classification of the centralizers for a sequence of monoids which contain the symmetric group> : A typical sequence {N_i} of monoids containing the symmetric group was defined. The centralizers of all N_i's have been determined. Most of them coincide with the least clone.4. <Monoids whose centralizer is the least done> : It is 'natural' to think that under a Galois connection a small monoid corresponds to a big monoid. However, against this naive intuition, some small monoids have been discovered whose centralizer is the least clone.5. <Application of the Kuznetsov criterion> : The power of the criterion established by Kuznetsov was shown to be quite useful in our study.
对于集合A,A上的克隆是一个在复合下封闭的多元函数集合。用L_A表示A上所有克隆的集合。本文对A上由一元函数构成的幺半群的集合M_A,考虑了M_A与L_A之间的一个自然定义的Galois联络。对于幺半群M,M的中心化子M^* 是所有与M中的每个一元函数“交换”的多元函数的集合。<Some fundamental properties of the Galois connection>(i)证明了么半群的所有中心化子都包含在某些特定的极大克隆中。(ii)同时,我们证明了对于每对不同的幺半群,它们的中心化子总是不同的。<Characterization of the centralizers of the symmetric group and the alternating group>:我们建立了对称群和交错群的中心化子的刻画,后者比前者更复杂. <Classification of the centralizers for a sequence of monoids which contain the symmetric group>定义了包含对称群的幺半群的典型序列{N_i}。确定了所有N_i的中心化子。大多数与最少的克隆相吻合. <Monoids whose centralizer is the least done>:认为在伽罗瓦联系下,一个小幺半群对应于一个大幺半群是“自然的”。然而,与这种天真的直觉相反,已经发现了一些小幺半群,它们的中心化子是最小的克隆。<Application of the Kuznetsov criterion>库兹涅佐夫建立的标准的力量在我们的研究中被证明是非常有用的。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Machida: "Hyperclones on a two-element set"Multiple-Valued Logic -An International Journal -. 8. 495-501 (2002)
H.Machida:“二元集上的超克隆”多值逻辑 - 国际期刊 -。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Machida: "Some results on the centralizers of monoids in clone theory"Proceedings 32nd International Symposium on Multiple-Valued Logic. 10-16 (2002)
H.Machida:“克隆理论中幺半群集中化的一些结果”第 32 届国际多值逻辑研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Haddad, L., Machida, H. and Rosenberg, I. G.: "Maximal and minimal partial clones"Journal of Automata, Languages and Combinatorics. 7. 83-93 (2002)
Haddad, L.、Machida, H. 和 Rosenberg, I. G.:“最大和最小部分克隆”自动机、语言和组合学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.G.Rosenberg: "Gigantic pairs of minimal clones-Characterization and existence"Multiple-Valued Logic-An International Journal. Vol.7. 129-148 (2001)
I.G.Rosenberg:“最小克隆的巨大对 - 特征和存在”多值逻辑 - 国际期刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Machida: "Relations between clones and full monoids"Proceedings 31st International Symposium on Multiple-Valued Logic. 279-284 (2001)
H.Machida:“克隆与完整幺半群之间的关系”第 31 届国际多值逻辑研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MACHIDA Hajime其他文献
MACHIDA Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MACHIDA Hajime', 18)}}的其他基金
Theory of commutation and minimal clones in multiple-valued logic
多值逻辑中的交换理论和最小克隆
- 批准号:
23540158 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of minimal clones over a finite field in multiple-valued logic
多值逻辑中有限域上的最小克隆的分类
- 批准号:
20540111 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of minimal clones in multiple-valued logic and finite fields
多值逻辑和有限域中最小克隆的分类
- 批准号:
18540116 - 财政年份:2006
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of the clone lattice and Galois connection in multiple-valued logic
多值逻辑中克隆格的结构和伽罗瓦连接
- 批准号:
15540112 - 财政年份:2003
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the structure of the lattice of clones consisting of multiple-valued logical functions
多值逻辑函数克隆格结构研究
- 批准号:
10640109 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Substructural logic with Galois connection
具有伽罗瓦连接的子结构逻辑
- 批准号:
24500024 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of the clone lattice and Galois connection in multiple-valued logic
多值逻辑中克隆格的结构和伽罗瓦连接
- 批准号:
15540112 - 财政年份:2003
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)