Research on prehomogeneous vector spaces and micro-local analysis
预齐次向量空间与微局部分析研究
基本信息
- 批准号:13640163
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(a) (From the abstract of the paper "Singular invariant hyperfunctions on the square matrix space and the alternating matrix space".) Fundamental calculations on singular invariant hyperfunctions on the n × n square matrix space and on the 2n × 2n alternating matrix space are considered in this paper. By expanding the complex powers of the determinant function or the Pfaffian function into the Laurent series with respect to the complex parameter, we can construct singular invariant hyperfunctions as their Laurent expansion coefficients. The author presents here the exact orders of the poles of the complex powers and determines the exact supports of the Laurent expansion coefficients. By applying these results, we prove that every quasi-relatively invariant hyperfunction can be expressed as a linear combination of the Laurent expansion coefficients of the complex powers and that every singular quasi-relatively invariant hyperfunction is in fact relatively invariant on the generic points of its support. In the last section, we give the formula of the Fourier transforms of singular invariant tempered distributions.(b) (From the abstract of the paper "Invariant Hyperfunction Solutions to Invariant Differential Equations on the Space of Real Symmetric Matrices".) The real special linear group of degree n naturally acts on the vector space of n × n real symmetric matrices. How to determine invariant hyperfunction solutions of invariant linear differential equations with polynomial coefficients on the vector space of n × n real symmtric matrices is discussed in this paper. We prove that every invariant hyperfunction solution is expressed as a linear combination of Laurent expansion coefficients of the complex power of the determinant function with respect to the parameter of the power. Then the problem is reduced to the determination of Laurent expansion coefficients.
(a) (From the abstract of the paper "Singular invariant hyperfunctions on the square matrix space and the alternating matrix space".) Fundamental calculations on singular invariant hyperfunctions on the n × n square matrix space and on the 2n × 2n alternating matrix space are considered in this paper. By expanding the complex powers of the determinant function or the Pfaffian function into the Laurent series with respect to the complex parameter, we can construct singular invariant hyperfunctions as their Laurent expansion coefficients. The author presents here the exact orders of the poles of the complex powers and determines the exact supports of the Laurent expansion coefficients. By applying these results, we prove that every quasi-relatively invariant hyperfunction can be expressed as a linear combination of the Laurent expansion coefficients of the complex powers and that every singular quasi-relatively invariant hyperfunction is in fact relatively invariant on the generic points of its support. In the last section, we give the formula of the Fourier transforms of singular invariant tempered distributions.(b) (From the abstract of the paper "Invariant Hyperfunction Solutions to Invariant Differential Equations on the Space of Real Symmetric Matrices".) The real special linear group of degree n naturally acts on the vector space of n × n real symmetric matrices. How to determine invariant hyperfunction solutions of invariant linear differential equations with polynomial coefficients on the vector space of n × n real symmtric matrices is discussed in this paper. We prove that every invariant hyperfunction solution is expressed as a linear combination of Laurent expansion coefficients of the complex power of the determinant function with respect to the parameter of the power. Then the problem is reduced to the determination of Laurent expansion coefficients.
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akihiko Gyoja: "Certain unipotent representations of finite Chevalley groups and Picard-Lefschetz monodromy"Ann. Sci. Ecole Norm.. Sup. Vol. 35. 437-444 (2002)
Akihiko Gyoja:“有限 Chevalley 群和 Picard-Lefschetz monodromy 的某些单能表示”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Muro: "Singular invariant hyperfunctions on the square matrix space and the alternating matrix space"Nagoya Math. J.. 169. (2003)
M.Muro:“方阵空间和交替矩阵空间上的奇异不变超函数”名古屋数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Asakawa: "Nonresonant singular two-point boundary value problems"Nonlinear Analysis T.M.A.. 44-6. 791-809 (2001)
H. Asakawa:“非共振奇异两点边值问题”非线性分析 T.M.A. 44-6。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Muro, M.: "Construction of hyperfunction solutions to invariant linear differential equations"RIMS Kokyuroku. Vol.1211. 143-154 (2001)
Muro, M.:“不变线性微分方程超函数解的构造”RIMS Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Muro: "Invariant hyperfunction solutions to invariant differential equations on the space of real symmetric matrices"to appear in J. of Functional Analysis. (2002)
M. Muro:“实对称矩阵空间上不变微分方程的不变超函数解”出现在《泛函分析杂志》中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURO Masakazu其他文献
MURO Masakazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURO Masakazu', 18)}}的其他基金
Studies on prehomogeneous vector space and micro-local analysis
预齐次向量空间与微观局部分析研究
- 批准号:
19540176 - 财政年份:2007
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on prehomogeneous vector spaces and micro-local analysis
预齐次向量空间与微观局部分析研究
- 批准号:
15340042 - 财政年份:2003
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
"Research on prehomogeneous vector spaces and micro-local analysis"
《预齐次向量空间与微局部分析研究》
- 批准号:
11640161 - 财政年份:1999
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Research on prehomogeneous vector spaces and micro-local analysis"
《预齐次向量空间与微局部分析研究》
- 批准号:
09640175 - 财政年份:1997
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Applications of micro-local analysis and wavelet analysis to wave equations with variable coefficients
微观局部分析和小波分析在变系数波动方程中的应用
- 批准号:
16K05223 - 财政年份:2016
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Micro-local analysis applied to geometry and mathematical physics
应用于几何和数学物理的微观局部分析
- 批准号:
64755222 - 财政年份:2008
- 资助金额:
$ 2.56万 - 项目类别:
Research Fellowships
Studies on prehomogeneous vector space and micro-local analysis
预齐次向量空间与微观局部分析研究
- 批准号:
19540176 - 财政年份:2007
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on prehomogeneous vector spaces and micro-local analysis
预齐次向量空间与微观局部分析研究
- 批准号:
15340042 - 财政年份:2003
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
"Research on prehomogeneous vector spaces and micro-local analysis"
《预齐次向量空间与微局部分析研究》
- 批准号:
11640161 - 财政年份:1999
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Research on prehomogeneous vector spaces and micro-local analysis"
《预齐次向量空间与微局部分析研究》
- 批准号:
09640175 - 财政年份:1997
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)