Study on global properties of local martingales and martingales on manifolds.

局部鞅和流形上鞅的全局性质研究。

基本信息

  • 批准号:
    13640170
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

Head investigator A.Atsuji obtained the following main three results.1. For a minimal surface which may not be properly immersed, its total curvature is finite if its projective volume is finite. In this result we used some properties of Brownian motion on the surfaces which is martingale on the ambient spaces. Lemma for logarithmic derivative of δ-subharmonic functions which is proved by using properties of 1-dimensional local martingale works well.2. Parabolicity is characterized by δ-subharmonic functions. Using this characterization we showed some Liouville type theorems for harmonic maps of finite energy from parabolic manifolds to Hadamard manifolds. We used some properties of martingales given as images of Brownian motion by harmonic maps.3. A Nevanlinna theory for meromorphic functions on complex submanifolds in C^n is obtained. S.Kotani gave a necessarily and sufficient condition for 1 dimensional diffusions to be true martingales. K.Takegoshi gave some criteria for complete Riemannian manifolds to be parabolic, Liouville type theorems for harmonic maps and some results on isometry of conformal metric of positive scalar curvature. Y.Suzuki same results on long time behavior of diffusion processes in random environment with one-sided Brownian potential.
首席研究员A.Atsuji获得了以下主要三项结果: 1.对于可能无法正确浸入的最小曲面,如果其投影体积有限,则其总曲率也是有限的。在此结果中,我们使用了表面上布朗运动的一些属性,即环境空间上的鞅。利用一维局部鞅的性质证明了δ-次调和函数对数导数的引理效果良好。 2.抛物线性的特征是 δ 次谐波函数。利用这个表征,我们展示了从抛物流形到哈达玛流形的有限能量调和映射的一些刘维尔型定理。我们使用了鞅的一些性质,通过调和映射作为布朗运动的图像给出。 3.得到了C^n中复子流形亚纯函数的Nevanlinna理论。 S.Kotani 给出了一维扩散成为真鞅的充分必要条件。 K.Takegoshi给出了完全黎曼流形为抛物线的一些准则、调和映射的Liouville型定理以及正标量曲率的共形度量等距的一些结果。 Y.Suzuki 对具有单侧布朗势的随机环境中扩散过程的长期行为也得出了相同的结果。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atsushi Atsuji: "A lemma of logarimic derivative for some S-subharmonic functions"Complex variables. 46. 195-206 (2001)
Atsushi Atsuji:“某些 S 分谐波函数的对数导数引理”复变量。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kensho Takegoshi: "A note on divergence of Lp-integrals of subharmonic functions and its applications."Proc.Amer.Math.Soc.. vol.131,no.9. 2849-2858 (2003)
Kensho Takegoshi:“关于分调和函数的 Lp 积分的散度及其应用的说明。”Proc.Amer.Math.Soc.. vol.131,no.9。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Atsushi Atsuji: "A lemna of logatrithmic derivative for some f-subharmonic functions"Complex Variables. 46. 195-206 (2001)
Atsushi Atsuji:“某些 f 次谐波函数的对数导数的浮理”复变量。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ATSUJI Atsushi其他文献

Default functions and Liouville type theorems based on symmetric diffusions
基于对称扩散的默认函数和刘维尔型定理

ATSUJI Atsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ATSUJI Atsushi', 18)}}的其他基金

Value distribution theory of meromorphic functions based on diffusion processes
基于扩散过程的亚纯函数值分布理论
  • 批准号:
    24540192
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic aspects of Nevanlinna theory and their applications
Nevanlinna 理论的概率方面及其应用
  • 批准号:
    18540193
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The uniqueness and the degeneracy problems of meromorphic maps and the construction of meromorphic maps with deficient devisors.
亚纯映射的唯一性和简并性问题以及缺陷引数的亚纯映射的构造。
  • 批准号:
    14540196
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic analysis of sub harmonic functions and its application to value distribution theory
次谐波函数的随机分析及其在价值分布理论中的应用
  • 批准号:
    10640167
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了