Control of Near-wall Turbulence by Stabilizing Saddle-type Steady Flow

稳定鞍型稳流控制近壁湍流

基本信息

  • 批准号:
    13650183
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

In this project we first searched for saddle-type steady flows in a plane Couette system. We obtained quiescent states of the saddle type which appeared transiently in direct numerical simulations of turbulent flow, and then the quiescent states were used as an initial guess for the Newton iteration to numerically compute three-dimensional saddle solutions to the incompressible Navier-Stokes equation. At the lowest Reynolds number for self-sustaining turbulence we have also succeeded in numerically obtaining unstable periodic motion embedded in the Couette turbulence by using the original iterative method with the aid of the direct numerical simulations. This periodic saddle is a three-dimensional periodic solution, and it represents well the regeneration cycle of near-wall coherent structures, i.e., streaks and streamwise vortices. In order to demonstrate similarities of the saddle solutions obtained in the Couette system with those in a plane Poiseuille system we next compared their … More properties with those in a fully turbulent state of these systems. It has been found in the comparison that the mean velocity and the RMS velocities in the buffer region of near-wall turbulence are in excellent agreement with the corresponding velocities of the saddle solutions.On the other hands, we introduced a porous wall into boundary-layer flow to retard a flow separation (or equivalently to enhance momentum transfer), and we observed the significant effects of the wall porosity. We also obtained analytically the unstable eigensolutions to corrugated vortex sheets, which are a model for the near-wall streaky flow, at a long-wavelength limit. In this analysis we have elucidated theoretically the destabilization mechanism of the steaks, and we have found that the saddle-type steady state appears as a nonlinearly saturated state of unstable perturbations. Furthermore, we performed the direct numerical simulations of the flow downstream of a backward-facing step, and we have shown the generation mechanism of three-dimensional vortical structures appearing downstream of the step.We have worked on the stabilization of the saddle (unstable) solutions using the Pyragas' external-force method, and in the numerical experiments of the Couette system we have succeeded in the stabilization of the periodic saddles. In this strategy we can stabilize saddle solutions by small control input. Less
在这个项目中,我们首先搜索了平面couette系统中的马鞍型稳定流。我们获得了鞍类型的静态状态,该状态在湍流的直接数值模拟中瞬时出现,然后将静态状态用作牛顿迭代的初始猜测,以数值对不可压缩的Navier-Stokes方程进行数值计算三维马鞍溶液。在自我维持的湍流的最低雷诺数下,我们也成功地通过直接数值模拟了原始迭代方法,通过使用原始迭代方法在数值上获得了不稳定的周期性运动。该周期性鞍座是三维周期性解决方案,它很好地表示近壁相干结构的再生周期,即条纹和流向涡流。为了证明在COUETTE系统中与平面Poiseuille系统中获得的马鞍溶液的相似性,我们接下来将它们的……更多的属性与这些系统完全湍流状态的属性进行了比较。在比较中发现,近壁湍流缓冲区中的平均速度和RMS速度与鞍溶液的相应速度非常吻合。在另一只手中,我们将多孔的壁引入边界壁中,以延伸流动分离(或等效地增强动量转移的速度),并且我们观察到了重要的效果。我们还分析了对波纹涡流板的不稳定征收的征收,这是近壁条流的模型,该模型是长波长极限的。在此分析中,我们阐明了牛排的不稳定机理的理论,我们发现马鞍型稳态似乎是不稳定扰动的非线性饱和状态。此外,我们对向后的步骤进行了直接的数值模拟,我们已经展示了该步骤下游的三维涡流结构的生成机制,我们在使用Pyragas的外部实验中稳定了鞍座(不稳定)溶液的稳定(Unclencization),并在稳定下进行了数字实验。马鞍。在这种策略中,我们可以通过小型控制输入来稳定马鞍解决方案。较少的

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
河原, 木山, 八木: "Vorticity stretching and energy dissipation around a straight vortex tube in a uniform shear flow"JSME International Journal (Ser. B). Vol.44・No.3. 369-377 (2001)
Kawahara、Kiyama、Yagi:“均匀剪切流中直涡管周围的涡旋拉伸和能量耗散”JSME 国际期刊(Ser. B)第 369-377 期(2001 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
G.Kawahara, J.Jimenez, M.Uhlmann, A.Pinelli: "Linear instability of a corrugated vortex sheet -a model for streak instability"Journal of Fluid Mechanics. (印刷中).
G. Kawahara、J. Jimenez、M. Uhlmann、A. Pinelli:“波纹涡流片的线性不稳定性 - 条纹不稳定性模型”流体力学杂志(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Three-dimensional vortical structures of the backward-facing step flow at moderate Reynolds numbers
中等雷诺数下向后台阶流的三维涡旋结构
G.Kawahara, J.Jimenez, M.Shiba, M.Simens: "Characterization of near-wall turbulence in terms of equilibrium and periodic solutions"Center for Turbulence Research Proceedings of the Summer Program 2002. 179-190 (2002)
G.Kawahara、J.Jimenez、M.Shiba、M.Simens:“根据平衡和周期解来描述近壁湍流”中心湍流研究夏季计划 2002 年论文集。179-190 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Turbulent shear flow over active and passive porous surfaces
  • DOI:
    10.1017/s0022112001004888
  • 发表时间:
    2001-09-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiménez, J;Uhlmann, M;Kawahara, G
  • 通讯作者:
    Kawahara, G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAHARA Genta其他文献

KAWAHARA Genta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAHARA Genta', 18)}}的其他基金

Dissimilar heat transfer enhancement in porous channel turbulence
多孔通道湍流中的异种传热增强
  • 批准号:
    23656138
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Elucidation and control of turbulence-driven secondary flow in a rectangular duct using nonlinear traveling-wave solutions
使用非线性行波解决方案阐明和控制矩形管道中湍流驱动的二次流
  • 批准号:
    22360079
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation and control of coherent structures and large-scale turbulence structures based on saddle solutions
基于鞍解的相干结构和大规模湍流结构的阐明和控制
  • 批准号:
    19360085
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation and control of near-wall turbulence-A new approach by saddle solutions
近壁湍流的阐明和控制——鞍解的新方法
  • 批准号:
    16360090
  • 财政年份:
    2004
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
  • 批准号:
    DP240101743
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Projects
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
  • 批准号:
    23K03655
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of wall damping effect of turbulence using non-local eddy diffusivity
利用非局部涡扩散系数分析湍流壁面阻尼效应
  • 批准号:
    23K03670
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the Effect of Surface Roughness on Wall Turbulence in Partially-Filled Pipe Flow
了解表面粗糙度对部分填充管流中壁湍流的影响
  • 批准号:
    2797887
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Mechanism and prediction of drag modulation in wall-bounded turbulence by additives
添加剂对壁面湍流阻力调制的机理和预测
  • 批准号:
    22K03917
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了