Control of Near-wall Turbulence by Stabilizing Saddle-type Steady Flow
稳定鞍型稳流控制近壁湍流
基本信息
- 批准号:13650183
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we first searched for saddle-type steady flows in a plane Couette system. We obtained quiescent states of the saddle type which appeared transiently in direct numerical simulations of turbulent flow, and then the quiescent states were used as an initial guess for the Newton iteration to numerically compute three-dimensional saddle solutions to the incompressible Navier-Stokes equation. At the lowest Reynolds number for self-sustaining turbulence we have also succeeded in numerically obtaining unstable periodic motion embedded in the Couette turbulence by using the original iterative method with the aid of the direct numerical simulations. This periodic saddle is a three-dimensional periodic solution, and it represents well the regeneration cycle of near-wall coherent structures, i.e., streaks and streamwise vortices. In order to demonstrate similarities of the saddle solutions obtained in the Couette system with those in a plane Poiseuille system we next compared their … More properties with those in a fully turbulent state of these systems. It has been found in the comparison that the mean velocity and the RMS velocities in the buffer region of near-wall turbulence are in excellent agreement with the corresponding velocities of the saddle solutions.On the other hands, we introduced a porous wall into boundary-layer flow to retard a flow separation (or equivalently to enhance momentum transfer), and we observed the significant effects of the wall porosity. We also obtained analytically the unstable eigensolutions to corrugated vortex sheets, which are a model for the near-wall streaky flow, at a long-wavelength limit. In this analysis we have elucidated theoretically the destabilization mechanism of the steaks, and we have found that the saddle-type steady state appears as a nonlinearly saturated state of unstable perturbations. Furthermore, we performed the direct numerical simulations of the flow downstream of a backward-facing step, and we have shown the generation mechanism of three-dimensional vortical structures appearing downstream of the step.We have worked on the stabilization of the saddle (unstable) solutions using the Pyragas' external-force method, and in the numerical experiments of the Couette system we have succeeded in the stabilization of the periodic saddles. In this strategy we can stabilize saddle solutions by small control input. Less
在本计画中,我们首先研究了一个平面Couette系统中的鞍型定常流动。我们获得了在湍流直接数值模拟中出现的鞍型瞬态静态,然后将该静态作为牛顿迭代的初始假设,数值计算了不可压Navier-Stokes方程的三维鞍型解。在自持湍流的最低Reynolds数下,我们还成功地通过使用原始迭代方法并借助于直接数值模拟来数值获得嵌入在Couette湍流中的不稳定周期运动。这个周期鞍是一个三维周期解,它很好地代表了近壁相干结构的再生周期,即,条纹和流向涡。为了证明在Couette系统中获得的鞍解与在平面Poiffille系统中获得的鞍解的相似性,我们接下来比较了它们的 ...更多信息 与这些系统的完全湍流状态下的性质。通过比较发现,近壁湍流缓冲区的平均速度和均方根速度与鞍解的相应速度吻合得很好。另一方面,我们在边界层流动中引入多孔壁以阻止流动分离(或等效地增强动量传递),并观察到壁面多孔性的显著影响。我们还得到了波纹涡面的不稳定本征解,这是一个模型的近壁条纹流,在长波长的限制。在这个分析中,我们已经从理论上阐明了牛排的失稳机制,我们已经发现,鞍型稳态出现作为一个非线性饱和状态的不稳定扰动。此外,我们还对后台阶下游的流动进行了直接数值模拟,揭示了后台阶下游三维涡结构的产生机理,并对鞍形结构的稳定性进行了研究(不稳定)的解决方案,使用皮拉加斯的外力方法,在Couette系统的数值实验中,我们成功地稳定了周期鞍。在这种策略中,我们可以通过小的控制输入稳定鞍解。少
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
河原, 木山, 八木: "Vorticity stretching and energy dissipation around a straight vortex tube in a uniform shear flow"JSME International Journal (Ser. B). Vol.44・No.3. 369-377 (2001)
Kawahara、Kiyama、Yagi:“均匀剪切流中直涡管周围的涡旋拉伸和能量耗散”JSME 国际期刊(Ser. B)第 369-377 期(2001 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Kawahara, J.Jimenez, M.Uhlmann, A.Pinelli: "Linear instability of a corrugated vortex sheet -a model for streak instability"Journal of Fluid Mechanics. (印刷中).
G. Kawahara、J. Jimenez、M. Uhlmann、A. Pinelli:“波纹涡流片的线性不稳定性 - 条纹不稳定性模型”流体力学杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Three-dimensional vortical structures of the backward-facing step flow at moderate Reynolds numbers
中等雷诺数下向后台阶流的三维涡旋结构
- DOI:
- 发表时间:2001
- 期刊:
- 影响因子:0
- 作者:S.Yanase;G.Kawahara;H.Kiyama
- 通讯作者:H.Kiyama
G.Kawahara, J.Jimenez, M.Shiba, M.Simens: "Characterization of near-wall turbulence in terms of equilibrium and periodic solutions"Center for Turbulence Research Proceedings of the Summer Program 2002. 179-190 (2002)
G.Kawahara、J.Jimenez、M.Shiba、M.Simens:“根据平衡和周期解来描述近壁湍流”中心湍流研究夏季计划 2002 年论文集。179-190 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Turbulent shear flow over active and passive porous surfaces
- DOI:10.1017/s0022112001004888
- 发表时间:2001-09-10
- 期刊:
- 影响因子:3.7
- 作者:Jiménez, J;Uhlmann, M;Kawahara, G
- 通讯作者:Kawahara, G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAHARA Genta其他文献
KAWAHARA Genta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAHARA Genta', 18)}}的其他基金
Dissimilar heat transfer enhancement in porous channel turbulence
多孔通道湍流中的异种传热增强
- 批准号:
23656138 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Elucidation and control of turbulence-driven secondary flow in a rectangular duct using nonlinear traveling-wave solutions
使用非线性行波解决方案阐明和控制矩形管道中湍流驱动的二次流
- 批准号:
22360079 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation and control of coherent structures and large-scale turbulence structures based on saddle solutions
基于鞍解的相干结构和大规模湍流结构的阐明和控制
- 批准号:
19360085 - 财政年份:2007
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation and control of near-wall turbulence-A new approach by saddle solutions
近壁湍流的阐明和控制——鞍解的新方法
- 批准号:
16360090 - 财政年份:2004
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
- 批准号:
23K03655 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the Effect of Surface Roughness on Wall Turbulence in Partially-Filled Pipe Flow
了解表面粗糙度对部分填充管流中壁湍流的影响
- 批准号:
2797887 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Understanding the Coupled Interactions Between Hair-Like Micromechanoreceptors and Wall Turbulence
了解毛发状微机械感受器与壁湍流之间的耦合相互作用
- 批准号:
2224849 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Dissecting non-equilibrium effects in wall turbulence
剖析壁湍流中的非平衡效应
- 批准号:
DP210102172 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Projects
Wall Turbulence Control and Skin-Friction Drag Reduction with Novel Surface Microstructures
利用新型表面微观结构控制壁面湍流并减少表面摩擦阻力
- 批准号:
2039433 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
A Comprehensive Study of the Combined Effects of Drilling Fluid Rheological Properties and Near Wall Turbulence on the Particle Removal From Bed Deposits in Horizontal Wells
钻井液流变特性和近壁湍流对水平井床层沉积物颗粒去除的综合影响
- 批准号:
RGPIN-2016-04647 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
A Comprehensive Study of the Combined Effects of Drilling Fluid Rheological Properties and Near Wall Turbulence on the Particle Removal From Bed Deposits in Horizontal Wells
钻井液流变特性和近壁湍流对水平井床层沉积物颗粒去除的综合影响
- 批准号:
RGPIN-2016-04647 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Optimising wall-turbulence spectra for noise control
优化壁湍流谱以控制噪声
- 批准号:
2482739 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
A dynamical systems analysis of high-Reynolds-number wall turbulence
高雷诺数壁面湍流的动力系统分析
- 批准号:
EP/T009365/1 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Relationship between micelle structure and near-wall turbulence in surfactant drag-reduced flow
表面活性剂减阻流动中胶束结构与近壁湍流的关系
- 批准号:
20K04271 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)