Predictive Regressions for Measures of Systemic Risk
系统性风险度量的预测回归
基本信息
- 批准号:531866675
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Constantly recurring financial crises illustrate the importance of systemic risks and their prediction. In a first step, the project will propose new forecasting models for systemic risk measures. The selection of suitable predictors is of particular importance. Predictors proposed in the literature include inflation, 10-year government bond yields and stock market volatility. However, many of these explanatory variables exhibit varying degrees of dependence over time. As a result, significance tests for the predictive content of these variables do not hold size, such that a selection of suitable statistically significant predictors becomes impossible. Therefore, in a second step of the project, procedures are to be developed that can handle predictors with varying degrees of dependence. This should enable a statistically sound selection of predictors for systemic risk. The third step then sheds light on the role of breaks in the variance (i.e., the range of variation) of the explanatory variables on the statistically valid selection of predictors. Such breaks in variation are often observed for economic variables (such as inflation mentioned above) and are therefore an empirically relevant phenomenon. Therefore, it is of interest to "robustify" the significance tests for the predictors also against breaks in variance, which is the task of the third part of the project.
不断发生的金融危机说明了系统性风险及其预测的重要性。在第一步,该项目将为系统性风险衡量提出新的预测模型。选择合适的预测者尤为重要。文献中提出的预测指标包括通胀、10年期政府债券收益率和股市波动。然而,这些解释变量中的许多随着时间的推移表现出不同程度的依赖性。因此,对这些变量的预测性内容的显著性检验不会保持大小,因此选择合适的统计显著预测值变得不可能。因此,在该项目的第二步中,将开发能够处理具有不同依赖程度的预报器的程序。这应该能够从统计上合理地选择系统性风险的预测指标。然后,第三步阐明解释变量的方差(即变异范围)中的突变对统计上有效的预测值选择的作用。在经济变量(如上文提到的通货膨胀)中,经常可以观察到这种变化的突变,因此是一种与经验相关的现象。因此,将预测者的显著性测试“强化”也是针对方差突变的,这是项目第三部分的任务,这是有意义的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Matei Demetrescu其他文献
Professor Dr. Matei Demetrescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Matei Demetrescu', 18)}}的其他基金
Time-varying dynamics in panel data sets with stochastic trends
具有随机趋势的面板数据集中的时变动态
- 批准号:
240888307 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Approximation und Aggregation bei der Modellierung und Vorhersage persistenter Zeitreihen
持续时间序列建模和预测中的近似和聚合
- 批准号:
195036661 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
- 批准号:
EP/X038297/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Use of Random Compression Matrices For Scalable Inference in High Dimensional Structured Regressions
合作研究:使用随机压缩矩阵进行高维结构化回归中的可扩展推理
- 批准号:
2210672 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Use of Random Compression Matrices For Scalable Inference in High Dimensional Structured Regressions
合作研究:使用随机压缩矩阵进行高维结构化回归中的可扩展推理
- 批准号:
2210206 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
- 批准号:
1929209 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Investigating Structural Change in Predictive Regressions with Applications to Forecasting Stock Returns
研究预测回归的结构变化及其在预测股票回报中的应用
- 批准号:
ES/R00496X/1 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grant
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Study on peak-time regressions of body temperature and neuromuscular function in circadian variation
昼夜变化中体温和神经肌肉功能的峰值时间回归研究
- 批准号:
17K01623 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)