Stein phenomena and further development on shrinkage methods
斯坦因现象和收缩方法的进一步发展
基本信息
- 批准号:13680369
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is well-known that the sample mean and the sample covariance matrix are inadmissible under assumption of normality and appropriate loss function (This is called Stein effect or shrinkage methods.). Since discovery of this phenomenon, there has been a large body of studies on this topic. Furthermore, there has been a broad attention on so called Stein's unbiased risk estimate (SURE), which has been originally proposed for a method to evaluate risk function of estimators under consideration, beyond the original purpose. Although such new development has been reported recently, there are many problems in multivariate analysis with complex structure to be considered based on shrinkage method. The purpose of our research is to develop shrinkage method in complex multivariate model.In this year we investigate on following statistical models and develop shrinkage estimators :(1)We have considered the problem of estimating common regression coefficient matrix of two growth curve models and proposed new shrinkage estimators. Furthermore, we demonstrate numerical experiment to indicate that our proposed estimators have better performance over known estimators.(2)We have considered the problem of estimating a precision matrix of the multivariate normal distribution under the squared loss function and obtained improved estimators.(3)Applying theory of symmetric cones and generalized Wishart distributions, we have developed improved estimation method including the problem of estimating covariance matrix of complex Wishart distribution.
众所周知,在正态性假设和适当的损失函数下,样本均值和样本协方差矩阵是不可接受的(这称为斯坦因效应或收缩方法)。自从发现这种现象以来,人们对这个话题进行了大量的研究。此外,所谓的斯坦因无偏风险估计(SURE)受到了广泛的关注,该估计最初是为了评估所考虑的估计器的风险函数的方法而提出的,超出了最初的目的。虽然最近有这样的新进展报道,但基于收缩法的复杂结构多元分析还存在许多问题需要考虑。我们研究的目的是开发复杂多元模型中的收缩方法。今年我们研究了以下统计模型并开发了收缩估计器:(1)我们考虑了估计两个增长曲线模型的共同回归系数矩阵的问题,并提出了新的收缩估计器。此外,我们的数值实验表明,我们提出的估计器比已知的估计器具有更好的性能。(2)我们考虑了平方损失函数下估计多元正态分布的精度矩阵的问题,并获得了改进的估计器。(3)应用对称锥理论和广义Wishart分布,我们开发了改进的估计方法,包括估计复杂Wishart分布的协方差矩阵的问题。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hashimoto, A.: "Correction maximization under linear and quadratic constraints"Bulletin of the International Statistical Institute,53rd session. 117-118 (2001)
Hashimoto, A.:“线性和二次约束下的修正最大化”国际统计研究所公报,第 53 届会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sakurai, H.: "Bootstrap estimation for swap-rate by preliminary selection in university entrance examination"Bulletin of International Statistical Institute,53rd session. 235-236 (2001)
樱井H.:“通过大学入学考试初选对互换率进行Bootstrap估计”,国际统计研究所通报,第53期。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Alternative estimators of the common regression matrix in two GMANOVA models under weighted quadratic loss
加权二次损失下两个 GMANOVA 模型中公共回归矩阵的替代估计量
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shiraish, T.: "Robust estimates of location parameters in two-way layouts with interaction"Journal of the Japanese Society of Computational Statistics. 14・1. 1-9 (2001)
Shiraish, T.:“双向布局中位置参数的稳健估计”日本计算统计学会杂志 14・1(2001 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Tsukuma: "Simultaneous estimation of scale matrices in two-sample problem under elliptically contoured distributions."J.f the Japanese Society of Computational Statistics. 16(印刷中). (2004)
H.Tsukuma:“椭圆轮廓分布下的两个样本问题中的尺度矩阵的同时估计”。J.f 日本计算统计学会(2004 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KONNO Yoshihiko其他文献
KONNO Yoshihiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KONNO Yoshihiko', 18)}}的其他基金
Study on multivariate Statistical models and their inference procedures for analysis of high-dimensional data and its applications
高维数据分析的多元统计模型及其推理过程及其应用研究
- 批准号:
21500283 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments in inference theory of multivariate analysis on symmetric cones
对称锥多元分析推理理论的进展
- 批准号:
17500185 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




