Concept Chemical Knowledge Representation
概念化学知识表示
基本信息
- 批准号:13680433
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A huge quantity of electric documents mostly consisting of natural language texts are stored and circulated recently through the World Wide Web (WWW), etc. in the society. Although they include a variety of useful knowledge, it has been difficult for us and computers to fully utilize them as knowledge, such as deriving an answer by combining multiple pieces of knowledge. Toward one solution to this problem, we have proposed and developed a knowledge representation/inference scheme called "Concept Chemical Representation (CCR)", which representation is close to natural language expression and thus convenient for the conversion from natural language sentences.When converting natural language texts into CCR efficiently, it is required to focus meaningful sentences and ignore other parts for avoiding the inclusion of useless components into the CCR knowledge base. Accordingly, we have developed the following extraction methods of keywords and important sentences from a document.1) keyword extraction using the deviation statistics of word co-occurrence.2) keyword extraction using the small world structure of word co-occurrence.3) keyword extraction based on term activities measured as the human cognitive process for term recognition.While most existing methods are based on the use of TF*IDF (term frequency * inverse document frequency), our above original methods are different from the existing ones. Our methods can be applied to English sentences as well as Japanese sentences.
近来,社会上大量的以自然语言文本为主的电子文档被存储和通过万维网(WWW)等方式传播。虽然它们包含各种有用的知识,但对于我们和计算机来说,很难将它们作为知识充分利用,例如通过组合多个知识来得出答案。为了解决这一问题,我们提出并开发了一种称为概念化学表示(CCR)的知识表示/推理方案,它的表示接近自然语言表达,便于从自然语言句子转换成CCR,在将自然语言文本高效地转换为CCR时,需要关注有意义的句子,而忽略其他部分,以避免将无用的成分纳入CCR知识库。因此,我们从文档中提取关键词和重要句子的方法如下:1)基于词共现偏差统计的关键词提取;2)基于词共现的小世界结构的关键词提取;3)基于术语活动的关键词提取,作为人类认知过程的术语识别。虽然现有的大多数方法都是基于TF*IDF(词频*逆文档频率)的使用,但上述方法与现有的方法不同。我们的方法不仅适用于日语句子,也适用于英语句子。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Matsumura, Y.Ohsawa, M.Ishizuka: "Automatic Indexing for Asserted Keywords from a Document"Jour.of New Generation Computing. 21. 37-48 (2002)
N.Matsumura、Y.Ohsawa、M.Ishizuka:“自动索引文档中断言的关键字”新一代计算杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Okazaki, Y.Matsuo, M.Ishizuka: "Extracting Characteristic Sentences from Related Documents"Proc. 6^<th> Int'l Conf. on Knowledge-based Intelligent Information Eng. Systems. 1257-1261 (2002)
N.Okazaki、Y.Matsuo、M.Ishizuka:“从相关文档中提取特征句子”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
倉田岳人, 岡崎直観, 石塚 満: "係り受け関係に基づくグラフ構造を用いた質問応答システム"電子情報通信学会技術報告「自然言語処理」. 158-011. (2003)
Takehito Kurata、Naoki Okazaki、Mitsuru Ishizuka:“使用基于依赖关系的图结构的问答系统”IEICE 技术报告“自然语言处理”(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
松村真宏, 大澤幸生, 石塚満: "語の活性度に基づくキーワード抽出法"人工知能学会論文誌. 17・4. 398-406 (2002)
Masahiro Matsumura、Yukio Osawa、Mitsuru Ishizuka:“基于词活动的关键词提取方法”人工智能学会杂志 17・4(2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Matsumura, Y.Ohsawa, M.Ishizuka: "Automatic Indexing for Extracting Asserted Keywords from a Document"Jour. of New Generation Computing. 21・1. 37-47 (2002)
N.Matsumura、Y.Ohsawa、M.Ishizuka:“从文档中提取断言关键字的自动索引”《新一代计算》杂志 21・1(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIZUKA Mitsuru其他文献
ISHIZUKA Mitsuru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIZUKA Mitsuru', 18)}}的其他基金
A Next-generation Web Foundation based on Common Description of Concept Meaning expressed in Natural Language Texts and its Related Intelligent Functions
基于自然语言文本概念意义通用描述的下一代Web基础及其相关智能功能
- 批准号:
19200010 - 财政年份:2006
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Web Intelligence Functions based on Text Processing
基于文本处理的Web Intelligence功能
- 批准号:
16200007 - 财政年份:2004
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Intelligent Anthropomorphic Interface-Agent System in Networked Environment
网络环境下的智能拟人接口代理系统
- 批准号:
10558048 - 财政年份:1998
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on the Organization of Heterogeneous WWW Information Space based on Meaning Understanding of Web Pages
基于网页意义理解的异构WWW信息空间组织研究
- 批准号:
10480067 - 财政年份:1998
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Human Interface employing Intelligent Anthropomorphic Agent with Realistic Figure
采用具有逼真图形的智能拟人代理的人机界面
- 批准号:
06558045 - 财政年份:1994
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
A Hypothetical Reasoning Method for Computing Near-optimal Solution in polynomial Time
多项式时间内计算近最优解的假设推理方法
- 批准号:
06452398 - 财政年份:1994
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
A New Fast Inference Technique based on Knowledge-Base Compilation
一种基于知识库编译的新型快速推理技术
- 批准号:
04452190 - 财政年份:1992
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Knowledge-Base including Advanced Intelligent Function by handing Inconplete Knowledge
通过处理不完整的知识,包含高级智能功能的知识库
- 批准号:
02452154 - 财政年份:1990
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Knowledge-based 3-D Vision System incorporating Geometric Modeler as Deep Knowledge
基于知识的 3D 视觉系统,结合几何建模器作为深度知识
- 批准号:
63460132 - 财政年份:1988
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Configuration and Reasoning Functions for Knowledge-based VLSI Pattern Design System
基于知识的VLSI图形设计系统的配置和推理功能
- 批准号:
60550257 - 财政年份:1985
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Travel: RI: Small: Student Travel Grant for 20th International Conference on Principles of Knowledge Representation and Reasoning and Doctoral Consortium
旅费:RI:小额:第 20 届知识表示和推理原理及博士联盟国际会议学生旅费补助
- 批准号:
2328173 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Cross-Lingual Knowledge Representation and Alignment in LLMs
法学硕士中的跨语言知识表示和协调
- 批准号:
2876276 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Studentship
Knowledge Representation and Reasoning: Pushing the Frontier
知识表示和推理:推动前沿
- 批准号:
RGPIN-2020-05211 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Representation and Information Security
知识表示和信息安全
- 批准号:
RGPIN-2019-04251 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Representation and Reasoning: Pushing the Frontier
知识表示和推理:推动前沿
- 批准号:
RGPIN-2020-05211 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Scalable Knowledge Representation and Solving
可扩展的知识表示和解决
- 批准号:
RGPIN-2017-06018 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Representation and Information Security
知识表示和信息安全
- 批准号:
RGPIN-2019-04251 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Robust AI by Integration of Knowledge Representation and Machine Learning
通过知识表示和机器学习的集成实现强大的人工智能
- 批准号:
21H04905 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Student Support for the 18th International Conference of Knowledge Representation and Reasoning, 2021
2021 年第 18 届国际知识表示与推理会议的学生支持
- 批准号:
2138698 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant