代数曲線に付随するいくつかのmoduliの位相的研究

一些模数伴随代数曲线的拓扑研究

基本信息

  • 批准号:
    13740047
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

主として次の三つのmoduliについての研究を行った。(1)代数曲面より得られるquote schemeのcohcmology ringの計算(2)stable r-spin curveのmoduliのvirtual class(3)parabolic Hilbert schemeの位相的性質(1)代数曲面C上のtrivial locally free sheafの長さが有限のquotientのmoduli schemeはsmooth varietyになる。また自然なtorus actionが入り、その不動点集合はいくつかのCの対称積の直積になる。このようにとても調べやすい性質を持っている具体的な例について詳細に調べておくことは、今後の数学の発展にとって有意義であると考えられる。この研究ではquote schemeのcohomology ringの構造を調べた。そのためにquot schemeだけでなく、より扱いやすいfiltrationのmoduliを導入し、一種のsplitting principleを得ることで、quot schemeのcohomologyのある種の極限をとったものの構造を完全に決定することができた。(2)stable r-spin curveのmoduliの上に、ある種のよい性質を満たすcohomology classが存在することが予想されていた。その構成法も提案されていたが、実際にそのようにして得られるものが、よい性質をもっていることを確かめた。そのために用意した議論のうちのいくつかはこの問題への本質的な寄与であると思われる。(3)parabolic Hilbert schemeというものを導入した。これは、parabolic structureを与えられたideal sheafのmoduliである。特にsmooth algebraic surfaceのsmooth divisorにparabolic structureを持つ0-schemeのparabolic idealのmoduliとして得られるparabolic Hilbert schemeを考えると、これがsmoothになることがわかる。そこで、0-schemeのHilbert schemeについて知られている結果の基礎的な部分を拡張した。特にpunctualなもののcell decompositionはこの素材の重要な基礎付けになるものと思われる。この結果を基にしてde Cataldo氏と共同でChow groupの計算を行った。またHilbert schemeの理論で大変興味深いNakajima theoryのparabolicの場合への拡張も行うことができた。
The main body of a book, the second, the third, the moduli, the second, the third, the second, the second, the third, the second, the third, the second, the second, the third, the second, the (1) the properties of the phase of stable r-spin curve "moduli" virtual class (3) parabolic Hilbert scheme are calculated by the calculation of "quote scheme" cohcmology ring "on the algebraic surface C. (1) the length of the trivial locally free sheaf" on the algebraic surface C is finite "quotient" moduli scheme "smooth variety". The natural torus action is introduced, and the collection of points is called active and direct. I don't know what to do. I don't know. I don't know. This is the study of quote scheme cohomology ring and the creation of a pet pet. The import of filtration moduli, the import of splitting principle, the cohomology of quot scheme, the import of splitting principle, the import of cohomology, the import of import and export, the import of a license, the import of an import, the import of a license, the import of an import, the import of a license, the import of an import, the import of a license, the (2) there is a problem with stable r-spin curve

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takuro Mochizuki: "On the morphism of Duflo-Kirillov type"Journal of Geometry and Physics. 41 no.1・2. 73-113 (2002)
望月卓郎:“关于Duflo-Kirillov型的态射”《几何与物理》杂志41 no.1・2(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takuro Mochizuki: "The Gromov-Witten class and a perturbation theory in algebraic geometry"American Journal of Mathematics. 123no.2. 343-381 (2001)
望月卓郎:“代数几何中的格罗莫夫-维滕类和微扰理论”美国数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

望月 拓郎其他文献

Donaldson type invariants for algebraic surfaces : transition of moduli stacks
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    望月 拓郎
  • 通讯作者:
    望月 拓郎

望月 拓郎的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('望月 拓郎', 18)}}的其他基金

Generalized Hodge theory from the twistor perspective
扭量视角下的广义霍奇理论
  • 批准号:
    20K03609
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
tame harmonic bundleとその応用に関する研究
驯化调和丛及其应用研究
  • 批准号:
    17740037
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
moduli stackのsuper structure sheafに関する研究
模数叠层上部结构束研究
  • 批准号:
    15740021
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

作用素環・無限次元線形作用素と幾何学的トポロジー
算子代数、无限维线性算子和几何拓扑
  • 批准号:
    24K06704
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3次元トポロジーに由来する写像類群の部分群の構造解明
从 3D 拓扑导出的映射类组子组的结构阐明
  • 批准号:
    24K06744
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
大規模柔軟多環化合物の創製とトポロジー構造化学
大规模柔性多环化合物的创建和拓扑结构化学
  • 批准号:
    23K26732
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
次元に呪われない進化的トポロジー最適化
不受维数诅咒的进化拓扑优化
  • 批准号:
    24KJ1640
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
信頼性トポロジー最適設計の新展開:双対性の視点と加速最適化法を両輪として
可靠性拓扑优化设计新进展:对偶视角与双轮加速优化方法
  • 批准号:
    24K07747
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
グアニン四重鎖トポロジー認識のための酸性環境応答型プローブの分子設計
鸟嘌呤四链体拓扑识别酸性环境响应探针的分子设计
  • 批准号:
    24K08608
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
分裂期染色体構築におけるクロマチン基本構造とDNAトポロジーの役割
基本染色质结构和 DNA 拓扑在有丝分裂染色体组装中的作用
  • 批准号:
    23K23815
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
トポロジー最適化を用いた洗掘の起こりにくい橋脚形状の考案とその効果の実証
使用拓扑优化设计不易冲刷的桥墩形状并展示其有效性
  • 批准号:
    24K17346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
数論・トポロジーの様々な局面で現れる崩れた保型性を持つq-級数の研究
数论和拓扑学各个方面出现的破坏自同构的q级数研究
  • 批准号:
    24K16901
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
リー群上の両側トーラス作用の幾何とトポロジー
李群上双边环面作用的几何和拓扑
  • 批准号:
    24K06742
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了