Geometric harmonic analysis on homogeneous Siegel domains

齐次西格尔域的几何调和分析

基本信息

项目摘要

The main research results are listed as follows.1.We have introduced a family of Cayley transforms parametrized by admissible linear forms, and proved that every member maps the Siegel domain onto a bounded domain birationally and biholomorphically. This family contains the Cayley transform introduced by Penney in 1996 as well as the Cayley transform introduced by the head investigator in 2001. This result is already published as a research paper.2.We have proved that the harmonicity of the Poisson-Hua kernel is equivalent with the symmetry of the domain. Moreover, even if we vary the Koehler metric of the Siegel domain in the standard way, a necessary and a sufficient condition for the Poisson-Hua kernel to be harmonic is that, in addition to the symmetry of the domain, the metric considered is a positive number multiple of the Bergman metric. This result, too, is already published as a research paper.3.We have established that the analytically continued pseudoinverse map preserves th … More e tube domain if and only if the convex cone defining the tube domain is symmetric. In the actual theorem, the pseudoinverse map is equipped with a parameter, so that the theorem is a little more general. The result is published as a research paper (joint paper with a doctor course student Chifune Kai).4.We investigated the convexity of the images of homogeneous tube domains under the Cayley transforms mentioned in 1 above. A necessary and sufficient condition for the images of the Cayley and the dual Cayley transforms to be convex is that the tube domains are symmetric. The actual theorem is proved in a little more general way by considering the family of Cayley transforms. The result is published as a research paper (joint with a doctor course student Chifune Kai).5.We have found a series of non-symmetric open convex cones such that the degrees of the associated basic relative invariants are 1,2,...,r, where r is the rank of the open convex cone. Moreover in the course of joint research with Ishi we have shown that every basic relative invariant appears as an irreducible factor of the detgerminant of the right multiplication operator of the complexified clan. So far basic relative invaraats were obtained as a mere algorithmic resultant. We are currently writing a joint paper about this results. Less
主要研究结果如下:1.引入了一族由可容许线性形式参数化为参数的Cayley变换,并证明了每个成员将Siegel域以双调和双全纯的方式映射到有界域上。这个系列包括Penney在1996年引入的Cayley变换以及首席调查员在2001年引入的Cayley变换。这一结果已经作为研究论文发表。2.我们证明了Poisson-hua核的调和性与区域的对称性是等价的。此外,即使我们以标准的方式改变Siegel域的Koehler度量,Poisson-hua核是调和的一个充要条件是,除了域的对称性外,所考虑的度量是Bergman度量的正数倍。这一结果也已经作为研究论文发表了。3.我们已经证明了解析连续伪逆映射保持…更多的管域当且仅当定义管域的凸锥是对称的。在实际定理中,伪逆映射带有一个参数,从而使该定理更具一般性。这一结果被作为研究论文发表(与博士生Chifune Kai联合发表的论文)。4.我们研究了在上述1中提到的Cayley变换下,均匀管域的像的凸性。Cayley变换和对偶Cayley变换的象凸的充要条件是管域对称。通过考虑Cayley变换族,以更一般的方式证明了实际定理。5.我们发现了一系列非对称开凸锥,它们的基本相对不变量的次数为1,2,…,r,其中r是开凸锥的秩数。此外,在与Ishi共同研究的过程中,我们证明了每个基本相对不变量都表现为复杂化族的右乘法算子的确定式的一个不可约因子。到目前为止,基本的相对不变性仅仅是作为算法的结果而获得的。我们目前正在就这一结果撰写一篇联合论文。较少

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wavelet transform for semidirect product groups with not necessarily commutative normal subgroups
具有不一定可交换正规子群的半直积群的小波变换
Wavelet Transforms for Semidirect Product Groups with Not Necessarily Commutative Normal Subgroups
等質Siegel領域の対称性条件をめぐって
关于齐次西格尔区域的对称条件
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K..Kajiwara;T..Masuda;M..Noumi;Y..Ohta;Y..Yamada;T. Oshima;野村 隆昭
  • 通讯作者:
    野村 隆昭
Cayley変換像の凸性による対称管状領域の特徴付け
通过凯莱变换图像的凸性表征对称管状区域
On symplectic representations of normal j-algebras and their application to Xu's realizations of Siegel domains
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NOMURA Takaaki其他文献

Determinantal expressions of Bernoulli numbers
伯努利数的行列式
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sakai;Hidetaka;鷲見直哉;SAKAI Hidetaka;鷲見直哉;SAKAI Hidetaka;SAKAI Hidetaka;Takaaki Nomura;NOMURA Takaaki;T. Yamasaki and T. Nomura;T. Yamasaki and T. Nomura;山崎貴史,野村隆昭;Takaaki Nomura;野村隆昭;野村隆昭;野村隆昭
  • 通讯作者:
    野村隆昭
Hobsonの公式からHermite-Weber変換を経て (O(n), sl(2))-duality へ
通过 Hermite-Weber 变换从 Hobson 公式到 (O(n), sl(2))-对偶
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sakai;Hidetaka;鷲見直哉;SAKAI Hidetaka;鷲見直哉;SAKAI Hidetaka;SAKAI Hidetaka;Takaaki Nomura;NOMURA Takaaki;T. Yamasaki and T. Nomura;T. Yamasaki and T. Nomura;山崎貴史,野村隆昭;Takaaki Nomura;野村隆昭;野村隆昭;野村隆昭;Takaaki Nomura;Takaaki Nomura;野村隆昭
  • 通讯作者:
    野村隆昭
Realization of homogeneous cones through oriented graphs
通过有向图实现齐次锥体
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sakai;Hidetaka;鷲見直哉;SAKAI Hidetaka;鷲見直哉;SAKAI Hidetaka;SAKAI Hidetaka;Takaaki Nomura;NOMURA Takaaki;T. Yamasaki and T. Nomura;T. Yamasaki and T. Nomura;山崎貴史,野村隆昭
  • 通讯作者:
    山崎貴史,野村隆昭
Realization of homogeneous open convex cones
均匀开放凸锥体的实现
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sakai;Hidetaka;鷲見直哉;SAKAI Hidetaka;鷲見直哉;SAKAI Hidetaka;SAKAI Hidetaka;Takaaki Nomura;NOMURA Takaaki;T. Yamasaki and T. Nomura;T. Yamasaki and T. Nomura;山崎貴史,野村隆昭;Takaaki Nomura;野村隆昭;野村隆昭;野村隆昭;Takaaki Nomura;Takaaki Nomura;野村隆昭;Takaaki Nomura
  • 通讯作者:
    Takaaki Nomura
Minimum size matrix realization of a homogeneous cone
均匀圆锥的最小尺寸矩阵实现
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sakai;Hidetaka;鷲見直哉;SAKAI Hidetaka;鷲見直哉;SAKAI Hidetaka;SAKAI Hidetaka;Takaaki Nomura;NOMURA Takaaki;T. Yamasaki and T. Nomura;T. Yamasaki and T. Nomura;山崎貴史,野村隆昭;Takaaki Nomura
  • 通讯作者:
    Takaaki Nomura

NOMURA Takaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NOMURA Takaaki', 18)}}的其他基金

Algebraic structure and geometric harmonic analysis of homogeneous open convex cones and homogeneous real Siegel domains
齐次开凸锥和齐次实西格尔域的代数结构和几何调和分析
  • 批准号:
    24540177
  • 财政年份:
    2012
  • 资助金额:
    $ 5.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Harmonic Analysis on Homogeneous Cones and Homogeneous Siegel Domains
齐次锥体和齐次西格尔域的几何调和分析
  • 批准号:
    18340039
  • 财政年份:
    2006
  • 资助金额:
    $ 5.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytic and geometric studies of group representations and their applications
群表示的解析和几何研究及其应用
  • 批准号:
    06452010
  • 财政年份:
    1994
  • 资助金额:
    $ 5.82万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了