Disentangling the role of shear flow in regulating biomechanical interactions of endothelial cells with intracellular bacterial pathogens

阐明剪切流在调节内皮细胞与细胞内细菌病原体生物力学相互作用中的作用

基本信息

项目摘要

Endothelia cells (ECs) lining the inner lumen of blood vessels are constantly exposed to shear stresses (SSs) due to blood flowing over their surfaces. While the effects of fluid SSs on regulating different aspects of EC behavior and contributing to pathologies (e.g., atherosclerosis) have been previously studied, little is known about how fluid SSs modulate the interactions of ECs with intracellular bacterial pathogens like Listeria monocytogenes (LM). The primary site of infection by food-borne LM is the intestinal epithelium. However, in vivo LM can manage to spread to distant tissues by bypassing ECs and/or infecting them, a critical step to breach important barriers, such as the blood-brain, and systemically disseminate causing lethal fatalities. In this proposal, we will investigate how fluid SSs modulate host EC biomechanics, and in turn adhesion, invasion and intercellular spread of LM using an in vitro organotypic model. Taking advantage of this model, which is compatible with time-lapse microscopy, infection assays and parallel conduction of biomechanical measurements like traction force and monolayer stress microscopy, we will first explore how varying levels of fluid SSs modulate the susceptibility of ECs to bacterial infection. We will also investigate the underlying molecular mechanisms taking advantage of a recent transcriptomic screen that revealed key differentially expressed genes between flow exposed ECs as compared to ECs under stationary conditions. Subsequently, we will determine how intracellular bacterial infection alters EC biomechanics, how those alterations are modulated by fluid SSs, and whether SS exposure ultimately acts protectively benefiting the host by obstructing bacterial dissemination, or conversely benefits the bacteria by enhancing intercellular bacterial spread. Through the unique experimental setup in conjunction with biomechanical measurements and precise spatiotemporal quantitation of the infection process, we will be able to uncover both important pathogenesis and host defense mechanisms in a context where the important role of the hemodynamic forces is considered. Moreover, by using the specific pathogen LM as a tool to subtly modulate EC biomechanics (since LM does not destroy host cell integrity because it relies on it), we anticipate revealing novel aspects of vascular EC mechanobiology.
由于血液在其表面流动,血管内腔内衬的内皮细胞 (EC) 不断受到剪切应力 (SS) 的影响。虽然之前已经研究过液体 SS 对调节 EC 行为的不同方面以及导致病理学(例如动脉粥样硬化)的影响,但人们对液体 SS 如何调节 EC 与单核细胞增生李斯特菌 (LM) 等细胞内细菌病原体的相互作用知之甚少。食源性LM 的主要感染部位是肠上皮。然而,体内LM可以通过绕过EC和/或感染EC来设法传播到远处组织,这是突破血脑等重要屏障并系统性传播导致致命死亡的关键一步。在本提案中,我们将利用体外器官模型研究液体 SS 如何调节宿主 EC 生物力学,进而调节 LM 的粘附、侵袭和细胞间扩散。利用该模型,该模型与延时显微镜、感染测定和并行进行生物力学测量(如牵引力和单层应力显微镜)兼容,我们将首先探索不同水平的液体SS如何调节EC对细菌感染的敏感性。我们还将利用最近的转录组筛选来研究潜在的分子机制,该筛选揭示了与静态条件下的 EC 相比,流动暴露的 EC 之间的关键差异表达基因。随后,我们将确定细胞内细菌感染如何改变 EC 生物力学,这些改变如何通过液体 SS 进行调节,以及 SS 暴露最终是否通过阻碍细菌传播来保护性地有益于宿主,或者相反地通过增强细胞间细菌传播来有益于细菌。通过独特的实验设置,结合生物力学测量和感染过程的精确时空定量,我们将能够在考虑血流动力学的重要作用的情况下揭示重要的发病机制和宿主防御机制。此外,通过使用特定病原体 LM 作为巧妙调节 EC 生物力学的工具(因为 LM 不会破坏宿主细胞的完整性,因为它依赖于宿主细胞),我们期望揭示血管 EC 力学生物学的新方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Effie Bastounis, Ph.D.其他文献

Dr.-Ing. Effie Bastounis, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Effie Bastounis, Ph.D.', 18)}}的其他基金

Deciphering host-pathogen interactions using an organotypic stretching device and biomechanical approaches
使用器官型拉伸装置和生物力学方法破译宿主与病原体的相互作用
  • 批准号:
    490839690
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
  • 批准号:
    10750690
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
  • 批准号:
    10660507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Role of mechanical heterogeneity in cerebral aneurysm growth and rupture
机械异质性在脑动脉瘤生长和破裂中的作用
  • 批准号:
    10585539
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cerebrovascular endothelial cilia in the pathogenesis and therapy of Alzheimer's disease
脑血管内皮纤毛在阿尔茨海默病发病机制和治疗中的作用
  • 批准号:
    10575082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanisms of outflow tract morphogenesis regulated by extracellular matrix
细胞外基质调控流出道形态发生的机制
  • 批准号:
    10720451
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Effect of shear stress on coronary smooth muscle maturation
剪切应力对冠状动脉平滑肌成熟的影响
  • 批准号:
    10580556
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Brain capillary Piezo1 ion channels and blood flow regulation in Alzheimer’s Disease
阿尔茨海默病中的脑毛细血管 Piezo1 离子通道和血流调节
  • 批准号:
    10662664
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
  • 批准号:
    10563289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Homeostatic regulation of endothelial mechanotransduction
内皮机械传导的稳态调节
  • 批准号:
    10877241
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Hemodynamic Contributions to Vascular Dysfunction in Pulmonary Arterial Hypertension
血流动力学对肺动脉高压血管功能障碍的影响
  • 批准号:
    10570134
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了