Homeostatic regulation of endothelial mechanotransduction

内皮机械传导的稳态调节

基本信息

  • 批准号:
    10877241
  • 负责人:
  • 金额:
    $ 29.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

The vascular endothelium's principal responsibility is to support the inflammatory and metabolic needs of each of the body's organ systems. As such, these cells are highly sensitive to environmental cues and must be able to respond in a precise manner. The regulation of these responses likely occurs via numerous competing pathways. Of particular importance are the fluid shear stress forces imparted by blood flow. The mechanosensitive transcription factors KLF2 and KLF4 compete with other mechanosensitive transcription factors such as NF-kB and SMAD2/3 to suppress inflammation and vessel remodeling. Defects in the coupling between these competing pathways can cause vascular malformations. Klf2/4 are transcriptionally regulated by a MAPK-complex consisting of the kinases MEKK2/3, MEK5, and ERK5, and the scaffold protein p62. Importantly, the p62-MAPK-Klf2/4 axis is activated by high shear but suppressed by low shear to permit low shear-induced inflammation and remodeling. Besides the MAPKs, p62 also interacts with mitochondrial proteins and polyubiquitinated proteins. As mitochondrial remodeling and proteotoxic stress responses have been implicated in both shear responses and p62 signaling, this project will explore the possibility that shear-dependent changes to mitochondrial or ubiquitin homeostasis acts as a key regulator of p62-MAPK signaling. In aim 1 we will test shear-dependent changes to mitochondrial function and the role of mitochondria in regulating p62-MAPK-Klf2/4 signaling. In aim 2 we characterize shear-dependent changes to the ubiquitinome, determine its role in regulating p62-MAPK-Klf2/4 signaling, and the role of ubiquitin homeostasis regulating crosstalk between mechanotransduction pathways. The results obtained in this project will provide insight into the regulation of homeostatic mechanotransduction pathways and may reveal genetic and environmental drivers of KLF2-4-associated pathologies.
血管内皮的主要职责是支持炎症和代谢, 身体各器官系统的需求。因此,这些细胞对 环境提示,必须能够以精确的方式做出反应。这些规则 反应可能通过许多竞争途径发生。特别重要的是流体 血流产生的剪切应力。机械敏感性转录因子KLF 2和 KLF 4与其他机械敏感性转录因子如NF-κ B和SMAD 2/3竞争, 抑制炎症和血管重塑。这些相互竞争的产品之间的耦合缺陷 会导致血管畸形Klf 2/4受MAPK复合物的转录调控 由激酶MEKK 2/3、MEK 5和ERK 5以及支架蛋白p62组成。重要的是 p62-MAPK-Klf 2/4轴被高剪切激活,但被低剪切抑制,以允许低剪切。 剪切引起的炎症和重塑。除了MAPKs,p62还与线粒体 蛋白质和多聚泛素化蛋白质。由于线粒体重塑和蛋白毒性应激 剪切反应和p62信号传导都涉及到了这种反应,本项目将探讨 线粒体或泛素稳态的剪切依赖性变化可能是 p62-MAPK信号转导的关键调节因子。在aim 1中,我们将测试线粒体的剪切依赖性变化, 线粒体的功能和作用 p62-MAPK-Klf 2/4信号转导。在目标2中,我们描述了剪切依赖的泛素化改变, 确定其在调节p62-MAPK-Klf 2/4信号传导中的作用,以及泛素稳态的作用。 调节机械转导通路之间的串扰。本项目取得的成果 将提供对稳态机械转导通路调节的深入了解,并可能揭示 KLF 2 -4相关病理的遗传和环境驱动因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Gene Coon其他文献

Brian Gene Coon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
All-in-One Smart Artificial Blood Vessels
一体化智能人造血管
  • 批准号:
    EP/X027171/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Fellowship
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
  • 批准号:
    23H02991
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tissue engineered blood vessels
组织工程血管
  • 批准号:
    2891099
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Studentship
ealization of navigation surgery by automatic recognition of stomach and surrounding blood vessels using artificial intelligence
利用人工智能自动识别胃及周围血管,实现导航手术
  • 批准号:
    23K07176
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
  • 批准号:
    23H00551
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Creation of a technique for visualization of stress concentration in blood and blood vessels by combined measurement of photoelasticity and ultrasonic Doppler velocimetry
通过光弹性和超声多普勒测速的组合测量,创建了一种可视化血管中应力集中的技术
  • 批准号:
    23H01343
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels
剪切应力激活合成细胞用于狭窄血管中的靶向药物释放
  • 批准号:
    10749217
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
Creation of 3D tissue culture system integrated with blood vessels and autonomic nerves
打造血管与植物神经融合的3D组织培养系统
  • 批准号:
    23H01827
  • 财政年份:
    2023
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
  • 批准号:
    22K21006
  • 财政年份:
    2022
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了