Arithmetic of Cubic Fields and Elliptic Curves associated to them

三次域和与之相关的椭圆曲线的算术

基本信息

  • 批准号:
    14540037
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

For, an irreducible cubic polynomial P(X):=X^3+aX^2+bX+c over the rational number field Q, define a cubic curve E : w^3=P(u), and let E[Q] be the set of all rational points of E over Q (including the point at infinity; there are three points at infinity, and only one of them is rational over Q). Let ξ be a root of P(X), and define W(ξ):={α=qξ+r|q, r^∈Q, N_<Q(ξ)/Q>(α)=1}. Then we have a natural bijective map from W(ξ) to E[Q]. The subset W(ξ) of the cubic field Q(ξ) is stable under affine transformations of form ξ→sξ+t, s, t^∈Q, s≠0. By using such a transformation the curve is isomorphically mapped to one of two Mordell curves, y^2=x^3-2^43^3A^2, y^2=x^3-B^2(B+3), A, B^∈Q. The former is a short form of the pure cubic twist of the Fermat curve X^3+Y^3+AZ^3=0 as is well know. As for the latter, we showed that the Mordell-Weil rank is positive unless either B=-4 or -8/3. We could also obtain such a subfamily as the ranks of the members are at least 2 with a few exceptions. The subfamily was constructed by using the above presentation of E[Q] by W(ξ).In case where P(X) is a generic cyclic polynomial of degree 3, namely, P(X)=X^3-(s-3)X^2-sX-1, the short form is determined. In this cyclic case, W(ξ) allowed us to construct an elliptic curve by using Hilbert's theorem 90. An isomorphism between the two curves over Q was also obtained.In this project we deal with families of elliptic curves with one parameter in arithmetic viewpoint. It is also natural to see them as elliptic surfaces and to handle them in the way of algebraic geometry. It may be noteworthy that one of the investigator H. Tokunaga could solve Miranda-Persson's problem on the Mordell-Weil group of an extremal elliptic K3 surface.
对于有理数域Q上的不可约三次多项式P(X):=X^3+AX^2+BX+c,定义一条三次曲线E:W^3=P(U),设E[Q]是Q上E的所有有理点的集合(包括无穷远的点,无穷远有三个点,其中只有一个在Q上有理)。设ξ是P(X)的根,定义W(ξ):={α=qξ+r|q,r^∈q,N_&lt;q(ξ)/q&gt;(α)=1)。然后我们有一个从W(ξ)到E[Q]的自然双射映射。三次域Q(ξ)的子集W(ξ)在ξ→形式的仿射变换下是稳定的Sξ+t,S,t^∈q,S≠0.通过这样的变换,曲线被同构地映射到两条莫德尔曲线中的一条,y^2=x^3-2^43^3A^2,y^2=x^3-B^2(B+3),A,B^∈Q。对于后者,我们证明了除非B=-4或-8/3,否则Mordell-Weil秩为正。除了少数例外,我们也可以得到这样一个子族,其成员的秩数至少为2。利用W(ξ)对E[Q]的上述表示构造了子族,当P(X)是三次一般循环多项式时,即P(X)=X^3-(S-3)X^2-SX-1,确定了它的简写形式.在这种循环情况下,W(ξ)允许我们利用希尔伯特定理90构造一条椭圆曲线。得到了Q上两条曲线的同构关系。在这个项目中,我们用算术的观点讨论了一族单参数椭圆曲线。将它们视为椭圆曲面并以代数几何的方式处理它们也是很自然的。值得注意的是,其中一位研究人员H.Tokunaga可以解决极值椭圆K3曲面的Mordell-Weil群上的Miranda-Persson问题。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some Families of Mordell Curves associated to Cubic Fields.
与立方场相关的莫德尔曲线的一些族。
Hiroo Tokunaga: "Zariski k-plet for certain rational curve arrang. and dihedral covers"Topologg and its Appl.. to appear.
Hiroo Tokunaga:“Zariski k-plet for certain有理曲线排列和二面覆盖”Topologg and its Appl.. 出现。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Katsuya Miyake(co-ed.): "Galois Theory and Modular Forms"Kluwer Acad.Publ.(DEVM 11). 393 (2003)
Katsuya Miyake(合编):“伽罗瓦理论和模形式”Kluwer Acad.Publ.(DEVM 11)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Z_p-extensions
关于分圆 Z_p 扩展中椭圆曲线 Mordell-Weil 秩增长的注记
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsuya Miyake;Kazuo Matsuno
  • 通讯作者:
    Kazuo Matsuno
A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Zp-extensions
关于分圆 Zp 扩展中椭圆曲线 Mordell-Weil 秩增长的注记
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAKE Katsuya其他文献

MIYAKE Katsuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAKE Katsuya', 18)}}的其他基金

Live Imaging of membrane repair by high sensitive multi-photon laser microscope in vivo system.
高灵敏度多光子激光显微镜体内系统膜修复的实时成像。
  • 批准号:
    22390374
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Live Imaging for Two-photon microscopy: Membrane repair in Squid Gian Axon.
双光子显微镜实时成像:鱿鱼 Gian Axon 的膜修复。
  • 批准号:
    22659037
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of Number Theory based on Generic Polynomials
基于泛多项式的数论发展
  • 批准号:
    19540057
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
THE INVERSE PROBLEM OF GALOIS AND ITS APPLICATION TO NUMBER THEORY
伽罗瓦反问题及其在数论中的应用
  • 批准号:
    11440013
  • 财政年份:
    1999
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
COMPOSITE STUDY IN CLASS FIELD THEORY AND RELATED TOPICS
类场论及相关主题的综合研究
  • 批准号:
    08304004
  • 财政年份:
    1996
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了