Research of topological properties of metric spaces and dimensions
度量空间和维数的拓扑性质研究
基本信息
- 批准号:14540066
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is the investigations of topological properties around metric spaces, and dimensions related to metric spaces. The main objects of the research are the following :(A)Topological properties or structures of quotient spaces of metric spaces, and their product spaces(B)Metric spaces and dimensions(C)Compactifications in metric spaces, and their dimensions(D)Tangent sphere bundles, hyper surfaces in Riemannian manifold, and their dimensionsThe research on (A);(B);(C); and (D) has been done by Y.Tanaka mainly ; T.Goto ; T.Kimura and K.Morishita ; and M.Sekizawa, respectivelyConcerning (A), Y.Tanaka considered the following classic questions (1) & (2), and a question (3)(1)Characterize some topological spaces by means of certain nice quotient spaces of metric spaces(2)For k-spaces X, Y, what is a necessary and sufficient conditions for the product space X x Y to be a k-space?(3)For a space X having a certain k-network, or having a weak topology with respect to certain covering, investigate nice topological structures of the space XFor the above questions, Y.Tanaka obtained some nice answers or results in his (joint) papers in famous international journals, Topology and its Applications, Houston J.Math., or Topology Proceedings, and so on.Concerning (B)-(D), some nice results also obtained by the investigators in their (joint) papers in Topology and its Appl., Fund Math., or other international journals, etcThe details for these, containing related papers and science reports, etc., are given in our Research-Report (under this grant-in-aid for scientific research (14540066)), 2005. March (pp.1-340).
本研究计画主要探讨度量空间的拓扑性质,以及与度量空间相关的维数。主要研究内容如下:(A)度量空间的商空间及其乘积空间的拓扑性质或结构(B)度量空间及其维数(C)度量空间中的紧化及其维数(D)黎曼流形中的切球丛、超曲面及其维数(A)、(B)、(C)、(D)的研究主要由Y.Tanaka、T.后藤、T.Kimura和K.Morishita等人完成。关于(A),田中义雄(Y.Tanaka)考虑了下列经典问题(1)和(2),问题(3)(1)利用度量空间的某些良商空间刻画某些拓扑空间(2)对于k-空间X,Y,什么是乘积空间X x Y是k-空间的充分必要条件?(3)对于具有某种k-网或关于某种覆盖具有弱拓扑的空间X,研究空间X的良好拓扑结构对于上述问题,Y.Tanaka在国际著名期刊Topology and its Applications,Houston J.Math.,关于(B)-(D),研究者们在Topology and its Appl.,基金数学,或其他国际期刊等详细信息,包括相关论文和科学报告等,在我们的研究报告中给出(在科学研究补助金(14540066)下),2005年。《三月》(第1 -340页)。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Tanaka, T.Shinoda: "Orderability of compactfications"Questions and Answers in General Topology. (to appear). (2003)
Y.Tanaka、T.Shinoda:一般拓扑中的“紧凑化的可排序性”问答。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On Eberlein compactifications of metrizable spaces
关于可测量空间的 Eberlein 紧化
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:T.Kimura
- 通讯作者:T.Kimura
T.Kimura, C.Komada: "Spaces having a compactification which is a C-space"Topology and its Applications. (to appear). (2004)
T.Kimura、C.Komada:“具有紧凑化的空间,即 C 空间”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Yoshio其他文献
TANAKA Yoshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Yoshio', 18)}}的其他基金
Mechanisms which underlie the immediate inhibitory effects by n-3 polyunsaturated fatty acids of coronary artery contraction
n-3 多不饱和脂肪酸对冠状动脉收缩的直接抑制作用的机制
- 批准号:
20K11519 - 财政年份:2020
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on general-purpose optical tweezers system with different optical configurations for high performance non-contact 3D micromanipulation
不同光学配置的通用光镊系统用于高性能非接触3D显微操作的研究
- 批准号:
15K05921 - 财政年份:2015
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect of platelet rich plasma and bFGF in in-vivo tissue engineered vascularized soft tissue flap
富血小板血浆和bFGF在体内组织工程血管化软组织瓣中的作用
- 批准号:
25462794 - 财政年份:2013
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on 3D micro manipulation based on the spatial-temporal control of laser trap potential
基于激光陷阱势时空控制的3D微操控研究
- 批准号:
24560318 - 财政年份:2012
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unexpected pharmacological effects of n-3 polyunsaturated fatty acids (PUFAs): A new mechanism by which n-3 PUFAs produce blood vessel relaxation
n-3 多不饱和脂肪酸 (PUFA) 的意外药理作用:n-3 PUFA 产生血管松弛的新机制
- 批准号:
23590116 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental study of vascularized flap preparation in a tissue engineering chamber
组织工程室内血管化皮瓣制备的实验研究
- 批准号:
21592289 - 财政年份:2009
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Atypical beta-adrenoceptor in vascular smooth muscle : studies on the sensitivity to bupranolol and the effects of sympathetic nerve denervation
血管平滑肌中的非典型β-肾上腺素能受体:丁丙洛尔敏感性研究和交感神经去神经效应的研究
- 批准号:
20590092 - 财政年份:2008
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-contact micro manipuIation based on the dynamical control of laser trap fields
基于激光陷阱场动态控制的非接触式微操作
- 批准号:
20560252 - 财政年份:2008
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the finictional coupling between β3-adtenoceptor and MaxiK channel in urinary bladder smooth muscle
膀胱平滑肌β3-肌腱受体与MaxiK通道功能耦合的研究
- 批准号:
18590157 - 财政年份:2006
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Physiological roles of MaxiK channel in the regulation of smooth muscle mechanical activity and the new insights into the molecular mechanisms responsible for MaxiK channel-mediated responses
MaxiK 通道在平滑肌机械活动调节中的生理作用以及对 MaxiK 通道介导反应分子机制的新见解
- 批准号:
14572165 - 财政年份:2002
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




