Minimum distance of error-correcting codes constructed by algebraic function fields

代数函数域构造的纠错码的最小距离

基本信息

  • 批准号:
    14540127
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

We performed the. research of algebraic geometry codes which are error-correcting codes constructed from algebraic function fields, and related researches in algebraic number theory, arithmetic algebraic geometry, algebraic geometry and algebraic combinatrics. The aim of this project is to construct algebraic geometry codes explicitly applying algebraic function fields and to determine their minimum distances, which are.important numbers for estimating their abilities of correcting errors.In the research of algebraic geometry codes, we determined the minimum distance d(C) of certain type of algebraic geometry codes C, called one-point algebraic geometry codes, in the first academic year. Speaking in detail, we proved that the minimum distance d(C) of a one-point algebraic geometry code C is equal to its Feng-Rao lower bound d' (C) if C'satisfies some conditions. In the second, academic year, we construct algebraic geometry codes other than of one-point type, and computed their Feng -Ra … More o lower bounds. As a result, we found some algebraic geometry codes whose Feng-Rao lower bound are larger than the corresponding codes of-one-point type.As a research in algebraic number theory, we investigated the class number and the structure of the unit groups for algebraic number fields of lower extension degree over the rationals, specifically for quartic number fields of Kummer extension. Also we concerned ourselves with the question whether the integer ring of an abelian field of degree 8 hasa power basis.As a research in arithmetic algebraic geometry, we constructed the Teichmueller groupoids in the category of arithmetic geometry, and we described the Galois action and the monodromy representation (associated with conformal field theory) on the Teichmueller groupoids. Furthermore we proved the Bogomolov conjecture which states that if an irreducible curve in an abelian variety is not, isomorphic to an elliptic curve, then its algebraic points are distributed uniformly discretely for the Neron-Tate height.As a research in algebraic geometry, we considered the problem to estimate the degree of the Chow variety oil-cycles of degree d in the n-th projective space, and investigated a connection between resultants, which are projective invariants, and some Hilbert polynomials.As a reaearch in algebraic combinatrics, we investigated a minimal free resolution of the Stanley-Reisnerring of a simplicial complex. In particular, we give an upper bound on the dimension of the Unique non-vanishing homology group of a Buchsbaum Stanley-Reisner ring with linear resolution. Less
我们执行了.研究代数函数域构造的纠错码代数几何码,以及代数数论、算术代数几何、代数几何和代数组合方面的相关研究。本项目的目的是显式地应用代数函数域构造代数几何代码并确定它们的最小距离,这是估计其纠错能力的重要数字。在代数几何代码的研究中,我们确定了某种类型的代数几何代码C(称为单点代数几何代码)的最小距离d(C)。 第一学年。详细地说,我们证明了如果C'满足某些条件,则一点代数几何代码C的最小距离d(C)等于它的Feng-Rao下界d'(C)。在第二学年,我们构建了除单点类型之外的代数几何代码,并计算了它们的 Feng -Ra … More o 下界。结果,我们发现了一些代数几何码的Feng-Rao下界大于相应的单点型码。作为代数数论的研究,我们研究了有理数上较低扩展度的代数数域的类数和单位群的结构,特别是Kummer扩展的四次数域。我们还关注8次阿贝尔域的整数环是否具有幂基的问题。作为算术代数几何的研究,我们构造了算术几何范畴内的Teichmueller群群,并描述了Teichmueller群群的伽罗瓦作用和单向表示(与共形场论相关)。此外,我们证明了博戈莫洛夫猜想,即如果阿贝尔簇中的不可约曲线不与椭圆曲线同构,则其代数点对于 Neron-Tate 高度离散均匀分布。作为代数几何的研究,我们考虑了估计 n 次射影中 d 次 Chow 簇石油循环度的问题。 空间,并研究了射影不变量的结果与一些希尔伯特多项式之间的联系。作为代数组合学的研究,我们研究了单纯复形的 Stanley-Reisnerring 的最小自由分辨率。特别是,我们给出了具有线性分辨率的 Buchsbaum Stanley-Reisner 环的唯一非消失同调群的维数上限。较少的

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takashi Ichikawa: "Teichnmeller groupoids and Galois action"J.Reine Angew.Math.. 559. 95-114 (2003)
Takashi Ichikawa:“Teichnmeller 群群和 Galois 作用”J.Reine Angew.Math.. 559. 95-114 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tetsuji Tanaka: "On arithmetical bounds of Chow-forms"Tsukuda J.Math.. (to appear).
Tetsuji Tanaka:“论 Chow 形式的算术界限”Tsukuda J.Math..(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.I.-Katayama, C.Levesque, T.Nakahara: "On a family of real bicyclic biquadratic fields"Proceedings of the 2002 Canadian Number Theory Association Conference (Montreal), (H.Kisilevsky ed), AMS and CNC Proceedings. (to appear).
S.I.-Katayama、C.Levesque、T.Nakahara:“关于实双环双二次域系列”2002 年加拿大数论协会会议论文集(蒙特利尔),(H.Kisilevsky 编辑)、AMS 和 CNC 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shinichi Katayama: "On a family of real bicyclic biquadratic fields"Proceedings of the 2002 Canadian Number Theory Association Conference (Montreal),AMS and CNC Proceedings. To appear.
Shinichi Katayama:“On a family of real bicycling biquadratic fields”2002 年加拿大数论协会会议论文集(蒙特利尔)、AMS 和 CNC 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tatsuji Tanaka: "On arithmetical bounds of Chow-forms"Tsukuba Journal of Mathematics. To appear.
Tatsuji Tanaka:“论 Chow 形式的算术界限”筑波数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEHARA Tsuyoshi其他文献

UEHARA Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEHARA Tsuyoshi', 18)}}的其他基金

Explicit construction of algebraic geometry codes
代数几何代码的显式构造
  • 批准号:
    18540038
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Congruence relations between class numbers of cyclotomic fields
分圆域类数之间的同余关系
  • 批准号:
    02640063
  • 财政年份:
    1990
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Topics in algebraic geometry codes
代数几何代码主题
  • 批准号:
    1403062
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
CIF: Small: List Decoding for Algebraic Geometry Codes: Theoretical Analysis, Efficient Algorithms, Practical Implementation
CIF:小:代数几何代码的列表解码:理论分析、高效算法、实际实现
  • 批准号:
    0916492
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Models of encoding and decoding via Grobner basis for algebraic geometry codes and multidimensional cyclic codes
基于 Grobner 基的代数几何码和多维循环码的编码和解码模型
  • 批准号:
    19760269
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Explicit construction of algebraic geometry codes
代数几何代码的显式构造
  • 批准号:
    18540038
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast decoding methods of algebraic geometry codes and generalized algebraic geometry codes
代数几何代码和广义代数几何代码的快速解码方法
  • 批准号:
    16560323
  • 财政年份:
    2004
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Semigroups to Algebraic Geometry Codes
半群在代数几何代码中的应用
  • 批准号:
    0201286
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Design and Construction of Algebraic-Geometry Codes
代数几何代码的设计和构造
  • 批准号:
    07650410
  • 财政年份:
    1995
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Decoding Method of Some Algebraic Geometry Codes
一些代数几何代码的高效解码方法
  • 批准号:
    02650262
  • 财政年份:
    1990
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了