Explicit construction of algebraic geometry codes

代数几何代码的显式构造

基本信息

  • 批准号:
    18540038
  • 负责人:
  • 金额:
    $ 2.21万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

1. We have researched on Hermitian codes which are constructed by Hermitian curves, and have found a new method of constructing of them. By our method we have constructed new Hermitian codes different from known ones, that is, one of the one-point type, and we have further computed a lower bound for their minimum distances. As a result, we have proved that our Hermitian codes have better properties than ones of the one-point type.2. We carried out an investigation on finding an explicit linear basis of the trace-norm code, and have found its explicit form when the number of variables is less than or equal to 3.3. We have researched on algebraic construction of low density parity check codes, and have shown methods of constructions of them by vector spaces over a finite field and by non-abelian groups.4. We have studied on structure of integral bases of algebraic number fields, and have proved that there is only one case that the integer ring of a 2-elementary abelian field of degree greater than or equal to 8 is generated by a single integer.5. We have researched on Siegel modular forms, and have described the ring structure of Siegel modular forms of degree 2 over a ring containing 1/6.6. We have studied Stanley-Reisner rings which are locally complete intersections. As a result, we proved that locally complete intersection Stanley-Reisner rings are complete intersections if the corresponding simplicial complexes are of dimension more than 1 and are connected.
1.研究了由厄米特曲线构造的厄米特码,并找到了一种新的构造方法。用我们的方法构造了不同于已知的新的Hermitian码,即单点型的Hermitian码,并进一步计算了它们的最小距离的下界。结果证明了我们的厄米特码比单点型厄米特码具有更好的性质.本文研究了迹范数码的显式线性基的寻找问题,并在变元数小于等于3.3时找到了显式线性基的形式。研究了低密度校验码的代数构造,给出了利用有限域上的向量空间和非交换群构造低密度校验码的方法.研究了代数数域的整数基的结构,证明了次数大于等于8的2-初等阿贝尔数域的整数环仅由一个整数生成.研究了Siegel模形式,并给出了含1/6.6环上2次Siegel模形式的环结构.我们研究了局部完全交的Stanley-Reisner环。证明了局部完全交Stanley-Reisner环是完全交的,如果对应的单纯复形是维数大于1的且连通的.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A family of Schottky groups arising from the hypergeometric equation
由超几何方程产生的肖特基群族
Buchsbaum Stanley–Reisner rings with minimal multiplicity
  • DOI:
    10.1090/s0002-9939-05-08176-1
  • 发表时间:
    2003-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Terai;KEN-ICHI Yoshida
  • 通讯作者:
    N. Terai;KEN-ICHI Yoshida
On integral bases of the octic 2-elementary abelian extension fields
八次二元阿贝尔扩张域的积分基
Hasse's problem for monogenic fields
单基因场的哈斯问题
Orbits of irrationals by the modular group in a real quadratic field
实二次域中模群的无理数轨道
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toru;Nakahara
  • 通讯作者:
    Nakahara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEHARA Tsuyoshi其他文献

UEHARA Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEHARA Tsuyoshi', 18)}}的其他基金

Minimum distance of error-correcting codes constructed by algebraic function fields
代数函数域构造的纠错码的最小距离
  • 批准号:
    14540127
  • 财政年份:
    2002
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Congruence relations between class numbers of cyclotomic fields
分圆域类数之间的同余关系
  • 批准号:
    02640063
  • 财政年份:
    1990
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Topics in algebraic geometry codes
代数几何代码主题
  • 批准号:
    1403062
  • 财政年份:
    2014
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
CIF: Small: List Decoding for Algebraic Geometry Codes: Theoretical Analysis, Efficient Algorithms, Practical Implementation
CIF:小:代数几何代码的列表解码:理论分析、高效算法、实际实现
  • 批准号:
    0916492
  • 财政年份:
    2009
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Models of encoding and decoding via Grobner basis for algebraic geometry codes and multidimensional cyclic codes
基于 Grobner 基的代数几何码和多维循环码的编码和解码模型
  • 批准号:
    19760269
  • 财政年份:
    2007
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Fast decoding methods of algebraic geometry codes and generalized algebraic geometry codes
代数几何代码和广义代数几何代码的快速解码方法
  • 批准号:
    16560323
  • 财政年份:
    2004
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Semigroups to Algebraic Geometry Codes
半群在代数几何代码中的应用
  • 批准号:
    0201286
  • 财政年份:
    2002
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Design and Construction of Algebraic-Geometry Codes
代数几何代码的设计和构造
  • 批准号:
    07650410
  • 财政年份:
    1995
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Decoding Method of Some Algebraic Geometry Codes
一些代数几何代码的高效解码方法
  • 批准号:
    02650262
  • 财政年份:
    1990
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了