Explicit construction of algebraic geometry codes

代数几何代码的显式构造

基本信息

  • 批准号:
    18540038
  • 负责人:
  • 金额:
    $ 2.21万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

1. We have researched on Hermitian codes which are constructed by Hermitian curves, and have found a new method of constructing of them. By our method we have constructed new Hermitian codes different from known ones, that is, one of the one-point type, and we have further computed a lower bound for their minimum distances. As a result, we have proved that our Hermitian codes have better properties than ones of the one-point type.2. We carried out an investigation on finding an explicit linear basis of the trace-norm code, and have found its explicit form when the number of variables is less than or equal to 3.3. We have researched on algebraic construction of low density parity check codes, and have shown methods of constructions of them by vector spaces over a finite field and by non-abelian groups.4. We have studied on structure of integral bases of algebraic number fields, and have proved that there is only one case that the integer ring of a 2-elementary abelian field of degree greater than or equal to 8 is generated by a single integer.5. We have researched on Siegel modular forms, and have described the ring structure of Siegel modular forms of degree 2 over a ring containing 1/6.6. We have studied Stanley-Reisner rings which are locally complete intersections. As a result, we proved that locally complete intersection Stanley-Reisner rings are complete intersections if the corresponding simplicial complexes are of dimension more than 1 and are connected.
1。我们已经研究了由Hermitian Curves构建的Hermitian代码,并找到了一种新的构造方法。通过我们的方法,我们构建了与已知代码不同的新隐士代码,即单点类型之一,并且我们进一步计算了其最小距离的下限。结果,我们已经证明,我们的遗传码具有比单点类型的属性更好的属性。2。我们对找到痕迹代码的显式线性基础进行了研究,并在变量数量小于或等于3.3时找到了其明确形式。我们已经研究了低密度平价检查代码的代数构建,并显示了有限场和非亚伯利亚组的向量空间的构造方法。4。我们已经研究了代数数字字段的整体基础的结构,并证明只有一种情况是,一个大于或等于8的2-元素的ABELIAN度数的整数环由单个整数产生。5。我们已经研究了Siegel模块化形式,并在包含1/6.6的环上描述了Siegel模块化2度模块的环结构。我们已经研究了斯坦利 - 赖斯纳环,这是本地完整的交叉点。结果,我们证明,如果相应的简单复合物的尺寸超过1,并且连接在一起,则局部完整的stanley-reisner环是完整的交叉点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A family of Schottky groups arising from the hypergeometric equation
由超几何方程产生的肖特基群族
Hasse's problem for monogenic fields
单基因场的哈斯问题
On integral bases of the octic 2-elementary abelian extension fields
八次二元阿贝尔扩张域的积分基
Orbits of irrationals by the modular group in a real quadratic field
实二次域中模群的无理数轨道
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toru;Nakahara
  • 通讯作者:
    Nakahara
On power integral bases of the 2-elementary abelian extension fields
2-初等阿贝尔扩张域的幂积分基
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Motoda;T.Nakahara;K.H.Park
  • 通讯作者:
    K.H.Park
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEHARA Tsuyoshi其他文献

UEHARA Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEHARA Tsuyoshi', 18)}}的其他基金

Minimum distance of error-correcting codes constructed by algebraic function fields
代数函数域构造的纠错码的最小距离
  • 批准号:
    14540127
  • 财政年份:
    2002
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Congruence relations between class numbers of cyclotomic fields
分圆域类数之间的同余关系
  • 批准号:
    02640063
  • 财政年份:
    1990
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

New constructions of designs, graphs and codes over finite fields based on finite geometry and algebraic methods
基于有限几何和代数方法的有限域上的设计、图形和代码的新构造
  • 批准号:
    17K14236
  • 财政年份:
    2017
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topics in algebraic geometry codes
代数几何代码主题
  • 批准号:
    1403062
  • 财政年份:
    2014
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
CIF: Small: List Decoding for Algebraic Geometry Codes: Theoretical Analysis, Efficient Algorithms, Practical Implementation
CIF:小:代数几何代码的列表解码:理论分析、高效算法、实际实现
  • 批准号:
    0916492
  • 财政年份:
    2009
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Models of encoding and decoding via Grobner basis for algebraic geometry codes and multidimensional cyclic codes
基于 Grobner 基的代数几何码和多维循环码的编码和解码模型
  • 批准号:
    19760269
  • 财政年份:
    2007
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Fast decoding methods of algebraic geometry codes and generalized algebraic geometry codes
代数几何代码和广义代数几何代码的快速解码方法
  • 批准号:
    16560323
  • 财政年份:
    2004
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了