Dynamics of modular groups on infinite dimensional Teichmuller spaces
无限维 Teichmuller 空间上的模群动力学
基本信息
- 批准号:14540156
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Teichmueller spaces are not homogeneous spaces and their mudular groups do not act transitively. For compact Riemann surfaces, modular groups act discontinuously, but this is not the case for infinite dimensional Teichmueller spaces. We study the moduli spaces of Riemann surafces of infinite type by considering the chaotic behavior of the action of modular groups. For a viewpoint of general topology, the moduli space is either metrizable or not of the first separation axiom. However, except for a singular part, it can possess a certain geometric structure. In this research, we characterize this stable region by hyperbolic geometric structure of a Riemann surface and construct a contracted moduli space by the completion of the stable region. Consequently, we can describe the closure of a point set in terms of the geomery of Riemann surfaces, which is a point of teh contracted module space.We considered the space of pre-Schwarzian derivatives of univalent functions on the unit disk which extends to quasiconformal mappings of the extended plane in order to investigate the relation between connected components of the pre-Schwarzian derivatives of univalent functions on the unit disk which extends to quasiconformal mappings of the extended plane in order to investigate the relation between connected components of the pre-Schwarzian model of the universal Teichmueller space and classical families of univalent functions. We also investigated geometric properties of univalent functions with a prescribed growth of the Schwarzian derivative and found that they are starlike or convex according to the distance to the origin in the Bers embedding of the universal Teichmueller space.
Teichmueller空间不是齐性空间,它们的模群不传递。对于紧致黎曼曲面,模群的作用是不连续的,但对于无限维的Teichmueller空间,情况并非如此。通过考虑模群作用的混沌行为,研究了无限型黎曼曲面的模空间。从一般拓扑学的观点看,模空间要么是第一分离公理可度量化的,要么不是。然而,除了单个部分之外,它可以具有一定的几何结构。在本研究中,我们利用黎曼曲面的双曲几何结构来刻画这个稳定区域,并利用这个稳定区域的完备化来构造一个压缩模空间。因此,我们可以用黎曼曲面的几何特征来描述点集的闭包,本文考虑了单位圆盘上单叶函数的预Schwarzian导数空间,它扩张到扩张平面上的拟共形映射,以研究预Schwarzian导数空间的连通分支之间的关系。单位圆盘上单叶函数的Schwarzian导数,推广到扩张平面上的拟共形映射,以研究泛Teichmueller空间的Pre-Schwarzian模型的连通分支与单叶函数的经典族之间的关系.我们还研究了具有Schwarzian导数的指定增长的单叶函数的几何性质,并发现它们是星形的或凸的,根据到原点的距离,在通用Teichmueller空间的Bers嵌入。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Matsuzaki: "Conservative action of Kieinian groups with respect to the Patterson-Sullivan measure"Comput.Methods Funct.Theory. 2. 469-479 (2002)
K.Matsuzaki:“Kieinian 群关于 Patterson-Sullivan 测度的保守行为”计算方法函数理论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Matsuzaki: "The infinite direct product of Dehn twists acting on infinite dimensional Teichrmuller spaces"Kodai Math J.. 26. 279-287 (2003)
K.Matsuzaki:“作用于无限维 Teichrmuller 空间的 Dehn 扭曲的无限直积”Kodai Math J.. 26. 279-287 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Matsuzaki: "A countable Teichmuller modular group"Trans.Amer.Math.Soc.. (印刷中).
K.Matsuzaki:“可数 Teichmuller 模群”Trans.Amer.Math.Soc..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Matsuzaki: "Indecomposable continua and the limit sets of Kleinian groups"Contemporary Math.. (to appear).
K.Matsuzaki:“不可分解的连续体和克莱因群的极限集”当代数学..(待出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Matsuzaki: "The infinite direct product of Dehntwists acting on infinite dimensional Teichmuller spaces."Kodai Math.J.. 26. 279-287 (2003)
K.Matsuzaki:“作用于无限维 Teichmuller 空间的 Dehntwists 的无限直接乘积。”Kodai Math.J.. 26. 279-287 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUZAKI Katsuhiko其他文献
MATSUZAKI Katsuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUZAKI Katsuhiko', 18)}}的其他基金
Teichmuller spaces of symmetric structures and the rigidity and fixed-point problems of quasiconformal mapping class groups
对称结构的Teichmuller空间与拟共形映射类群的刚性和不动点问题
- 批准号:
20340030 - 财政年份:2008
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Researches on quasiconformal groups and the modular group of the universal Teichmuller space
通用Teichmuller空间的拟共形群和模群研究
- 批准号:
16340036 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
The Modular Group Action and the Virasoro Algebra
模块化群动作和 Virasoro 代数
- 批准号:
563799-2021 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
A representation of the Teichmuller modular group as a group of rational transfomations and its applications to dynamical systems and Kleinian groups
Teichmuller 模群作为一组有理变换的表示及其在动力系统和 Kleinian 群中的应用
- 批准号:
21K03271 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on dynamical system of the Teichmuller modular group represented by a group of rational transformations
以有理变换群为代表的Teichmuller模群动力系统研究
- 批准号:
18K03331 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classifying subgroups of the modular group using Wicks forms
使用 Wicks 形式对模群的子群进行分类
- 批准号:
2125193 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Studentship
Highest weight modules over the Virasoro algebra and the modular group action
Virasoro 代数和模块化群动作的最高权重模块
- 批准号:
431644-2012 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
The Action of the Modular Group on Signature Characters of Irreducible Highest Weight Representations of the Virasoro Algebra
模群对Virasoro代数不可约最高权表示的特征符的作用
- 批准号:
427466-2012 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Modular Group Action and the Virasoro Algebra
模块化群行动和 Virasoro 代数
- 批准号:
416597-2011 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
The congruence subgroup problem for the modular group
模群的同余子群问题
- 批准号:
382561-2009 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
Researches on quasiconformal groups and the modular group of the universal Teichmuller space
通用Teichmuller空间的拟共形群和模群研究
- 批准号:
16340036 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representations of Modular Group Algebras
模群代数的表示
- 批准号:
8002509 - 财政年份:1980
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant














{{item.name}}会员




