Asymptotic analysis of nonlinear ordinary differential equations and its applications
非线性常微分方程的渐近分析及其应用
基本信息
- 批准号:14540177
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.We consider second-order quasilinear ordinary differential equations which can be regarded as generalization of the Emden-Fowler equation. We determine asymptotic forms of every positive solutions. We also establish uniqueness of several types of positive solutions.2.We consider elliptic systems of Emden-Fowler type. We establish sufficient conditions for the oscillation of all solutions to the system. When the coefficient functions behave like positive constant multiples of |x|^a, our conditions are best possible in some sense.3.Until now oscillatory properties of second order quasilinear elliptic equations have been studied under several additional assumptions imposed on the nonlinear terms. However, we can establish effective oscillation criteria without doing so. In particular, for autonomous equations we can establish necessary and sufficient conditions for the oscillation of all solutions.4.Eigenvalue problems are studied for second-order semilnear ordinary differential equations, as well as partial differential equations of elliptic type. Asymptotic forms are obtained for variational eigenfunctions and eigenvalues.5.Asymptotic behavior of evetually positive solutions of n-th order quasilinear ordinary differential equations is studied. We establish necessary and sufficient conditions for the existence of eventually positive solutions with specified asymptotic behavior near the infinity.6.Fourth-order quasilinear ordinary differential equations are studied. We can establish necessary and/or sufficient conditions for such equations to have no eventually positive solutions.
1.考虑了二阶拟线性常微分方程,它可以看作是Emden-Fowler方程的推广。我们确定了每一个正解的渐近形式。我们还建立了几类正解的唯一性。2.考虑Emden-Fowler型椭圆方程组。我们建立了系统所有解振动的充分条件。当系数函数的行为类似于|X| ^a,我们的条件在某种意义下是最好的。3.到目前为止,在对非线性项施加几个附加假设的情况下,二阶拟线性椭圆型方程的振动性得到了研究。然而,我们可以建立有效的振动准则,而不这样做。特别地,对于自治方程,我们可以建立所有解振动的充分必要条件。4.研究了二阶半近似常微分方程和椭圆型偏微分方程的特征值问题。得到了变分特征函数和特征值的渐近形式。5.研究了n阶拟线性常微分方程正解的渐近性态。建立了在无穷远点附近存在具有特定渐近行为的最终正解的充分必要条件。6.研究了四阶拟线性常微分方程。我们可以建立这样的方程没有最终正解的必要和/或充分条件。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isolated singularities of sub-polyharmonic functions
次多调和函数的孤立奇点
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Futamura;Y.Mizuta
- 通讯作者:Y.Mizuta
Existence of nonoscillatory solutions to second-order elliptic systems of Emden-Fowler type
Emden-Fowler 型二阶椭圆系统非振荡解的存在性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Takasi Kusano;and Tomoyuki Tanigawa;Manabu Naito;Manabu Naito;Takasi Kusano;Manabu Naito
- 通讯作者:Manabu Naito
Asymptotic formula for eigenvalues of simple pendulum Problems
单摆问题特征值的渐近公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Kobayashi;G.Hector;T.Shibata;T.Shibata;T.Shibata;T.Shibata;A.Bi's;T.Kobayashi;T.Shibata;T.Shibata;T.Shibata;T.Shibata
- 通讯作者:T.Shibata
Asymptotic formula foe eigenvalues of simple pendulum problems
简单摆问题特征值的渐近公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tetsutaro Shibata
- 通讯作者:Tetsutaro Shibata
Tomomitsu Teramoto: "A Liouvill type theorem for semilinear elliptic systems"Pacific J. Math.. 204. 247-255 (2002)
Tomomitsu Teramoto:“半线性椭圆系统的刘维尔型定理”Pacific J. Math.. 204. 247-255 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
USAMI Hiroyuki其他文献
USAMI Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('USAMI Hiroyuki', 18)}}的其他基金
Asymptotic Analysis of quasilinear ordinary differential equations and its application to asymptotic analysis of elliptic equations
拟线性常微分方程的渐近分析及其在椭圆方程渐近分析中的应用
- 批准号:
23540196 - 财政年份:2011
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of ordinary differential equations, and its application to partial differential equations
常微分方程的渐近分析及其在偏微分方程中的应用
- 批准号:
12640179 - 财政年份:2000
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Eigenvalue Problems of Nonlinear Elliptic Equations
非线性椭圆方程特征值问题的研究
- 批准号:
10640208 - 财政年份:1998
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative studies of solutions to elliptic equations in unbounded domains
无界域中椭圆方程解的定性研究
- 批准号:
09640192 - 财政年份:1997
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The study on perturbation problem for the nonliner elliptic partial differential equation by variational method
非线性椭圆偏微分方程摄动问题的变分法研究
- 批准号:
23740124 - 财政年份:2011
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On symmetric and radial viscosity solutions for elliptic partial differential equation.
椭圆偏微分方程的对称和径向粘度解。
- 批准号:
09640187 - 财政年份:1997
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




