Asymptotic analysis of ordinary differential equations, and its application to partial differential equations
常微分方程的渐近分析及其在偏微分方程中的应用
基本信息
- 批准号:12640179
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Quasilinear ODEs of seond-order, which are generalizations of Emden's equation, are considered. Asymptotic representations of positive solutions are obtained explicitly. When nonlinear terms have singularities at the origin, uniqueness of decaying positive solutions is established.(2) Two-term quasilinear ODEs of fourth-order are considered. Neessary and/or sufficient conditions are established for them to have no positive solutions existing near the infinity. Generalizations and applications of these results to 4-dimensional ordinary differential systems are also obtained.(3) As an application of the results in (1), we obtain sufficient conditions for some types of quasilinear exterior elliptic BVPs to have positive solutions with specified asymptotic behavior near the infinity. As an application of the results in (2), we obtain sufficient conditions for some types of semilinear 2-dimensional exterior elliptic problems to have no positive solutions existing near the infinity.(4) Eigenvalue problems for second-order semilinear ODEs on finite intervals are studied. We establish asymptotic properties of (variational) eigenvalues and eigenfunctions. Eigenvalue problems for n-th order linear ODEs are also studied on infinite intervals. We extend well-known Sturmian theory to these problems partially.(5) We consider self-similar solutions of parabolic systems introduced by Keller and Segel to describe aggregation phenomena of molds due to chemotaxis. We find that such solutions must be radially symmetric, and then clarify the relation between parameters and various norms of solutions.
(1)考虑了二阶拟线性常微分方程组,它是Emden方程的推广。明确地得到了正解的渐近表示。当非线性项在原点有奇性时,建立了衰减正解的唯一性。(2)考虑了二项四阶拟线性常微分方程组。建立了它们在无穷远附近不存在正解的必要条件和/或充分条件。(3)作为文(1)中结果的应用,我们得到了某些类型的拟线性外椭圆边值问题在无穷远附近有正解的充分条件。作为(2)中结果的应用,我们得到了某些类型的半线性二维椭圆型外问题在无穷远附近不存在正解的充分条件。(4)研究了有限区间上二阶半线性常微分方程组的特征值问题。我们建立了(变分)特征值和特征函数的渐近性质。还研究了无穷区间上n阶线性常微分方程组的特征值问题。我们将著名的Sturmian理论部分推广到这些问题。(5)考虑Keller和Segel提出的抛物型系统的自相似解来描述由于趋化性而导致的霉菌聚集现象。我们发现这类解一定是径向对称的,并阐明了参数与解的各种范数之间的关系。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y Mizuta: "Boundary limits of'functions in weighted Lebesgue or Sobolev classes"Revue Roumaine Math. Pures Appl.. 46. 67-75 (2001)
Y Mizuta:“加权勒贝格或索博列夫类中函数的边界限制”Revue Roumaine Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yuki Naito: "Self-similar solutions to a parabolic system modeling chemotaxis"J.Differential Equations. (印刷中).
Yuki Naito:“模拟趋化性的抛物线系统的自相似解”J.微分方程(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ken-ichi kamo: "Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity"Hiroshima Math. J.. 31. 35-49 (2001)
加茂健一:“次齐次二阶拟线性常微分方程正解的渐近形式”广岛数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Mizukami et al: "Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations"Hiroshima Math. J.. (to appear).
M. Mizukami 等人:“一类二阶拟线性常微分方程解的渐近行为”广岛数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T Shibata: "Precise special asymptotics for th Dirichlet problem -u"(t) + g(u(t)) = λsin u(t)"J. Math. Anal. Appl.. (to appear).
T Shibata:“狄利克雷问题 -u 的精确特殊渐进”(t) + g(u(t)) = λsin u(t)”J. Math. Anal. Appl..(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
USAMI Hiroyuki其他文献
USAMI Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('USAMI Hiroyuki', 18)}}的其他基金
Asymptotic Analysis of quasilinear ordinary differential equations and its application to asymptotic analysis of elliptic equations
拟线性常微分方程的渐近分析及其在椭圆方程渐近分析中的应用
- 批准号:
23540196 - 财政年份:2011
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of nonlinear ordinary differential equations and its applications
非线性常微分方程的渐近分析及其应用
- 批准号:
14540177 - 财政年份:2002
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Eigenvalue Problems of Nonlinear Elliptic Equations
非线性椭圆方程特征值问题的研究
- 批准号:
10640208 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative studies of solutions to elliptic equations in unbounded domains
无界域中椭圆方程解的定性研究
- 批准号:
09640192 - 财政年份:1997
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




