Research on quasilinear elliptic equations with rapidly growing principal parts

主部快速增长拟线性椭圆方程研究

基本信息

  • 批准号:
    14540211
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

1.We have investigated quasilinear elliptic equations with non-power like increasing principal parts on the whole space and showed the existence of positive solutions. The energy functionals attached to the equations are difficult to be treated in the usual Sobolev spaces. Therefore we investigated precisely the properties of Orlicz-Sobolev spaces and functionals on those spaces. Using these properties as an basis and applying concentration-compactness arguments by P.L.Lions, we have shown the existence of positive solutions.2.Although the principal parts are the same in the equations stated above, when the growing orders of the forcing terms are small compared to those of principal parts, we have shown the existence of multiple positive solutions. The regions stated here are bounded. Using the regularity of solutions and comparison theorem for these equations, in addition to the properties of Orlicz-Sobolev spaces and the functionals on those spaces, and applying both variational methods and super-, sub-solution methods, we have shown the existence of multiple positive solutions. Further the existence of maximal solution is proved.3.In the case when the principal part grows very slowly, as in the case when the principal part grows rapidly, the Orlicz-Sobolev is not reflexive, and the functional is not Frechet differentiable. These facts make analysis difficult. K. Le has analyzed the equations of this type with subcritical nonlinearity by using variational inequalities. Here, making use of the solutions given by K. Le, we showed the existence of positive solutions of the equations with critical nonlinearities. The hypothesis on the behavior of exterior forces near the origin can be removed.
1.研究了在全空间上具有非幂型增主部的拟线性椭圆型方程,证明了正解的存在性。在通常的Sobolev空间中,能量泛函很难处理。因此,我们精确地研究了Orlicz-Sobolev空间和这些空间上的泛函的性质。以这些性质为基础,应用P. L. Lions的集中-紧性论证,我们证明了正解的存在性. 2.虽然上述方程的主部相同,但当强迫项的增长阶比主部的增长阶小时,我们证明了多个正解的存在性.这里所述的区域是有界的。利用这些方程解的正则性和比较定理,以及Orlicz-Sobolev空间及其上泛函的性质,利用变分方法和上下解方法,我们证明了多个正解的存在性. 3.在主部增长很慢的情况下,如主部增长很快的情况,Orlicz-Sobolev不是自反的,泛函不是Frechet可微的.这些事实使分析变得困难。K. Le利用变分不等式分析了这类具有次临界非线性项的方程。本文利用K. Le,我们证明了具有临界非线性项的方程正解的存在性。关于原点附近外力行为的假设可以被取消。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiple positive solutions of nonlinear eigenvalue problems associated to a class of p-Laplacian like operators
与一类 p-拉普拉斯算子相关的非线性特征值问题的多个正解
Variational Methods in Orlicz-Sobolev spaces to quasilinear elliptic equations.
Orlicz-Sobolev 空间中拟线性椭圆方程的变分方法。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    [2] Y.Muroya;E.Ishiwata;N.Guglielmi;N.Fukagai;N.Fukagai;深貝暢良
  • 通讯作者:
    深貝暢良
Nobuyoshi Fukagai, Kimiaki Narukawa: "Multiple positive solutions of nonlinear eigenvalue problems associated to a class of p-Laplacian like operators"Communications in Contemporary Mathematics. 5-5. 737-759 (2003)
Nobuyoshi Fukagai、Kimiaki Narukawa:“与一类 p-拉普拉斯算子相关的非线性特征值问题的多重正解”当代数学通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nobuyoshi Fukagai, Kimiaki Narukawa: "Multiple positive solutions of nonlinear eigenvalue problems associated to a class of p-Laplacian like operators"Communications of Contemporary Mathematics. (to appear).
Nobuyoshi Fukagai、Kimiaki Narukawa:“与一类 p-拉普拉斯算子相关的非线性特征值问题的多重正解”当代数学通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NARUKAWA Kimiaki其他文献

NARUKAWA Kimiaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NARUKAWA Kimiaki', 18)}}的其他基金

Free boundary problem with quasilinear elliptic equations
拟线性椭圆方程的自由边界问题
  • 批准号:
    22540229
  • 财政年份:
    2010
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Some Degenerate Quasilinear Elliptic Equations in Unbounded Domains
无界域中一些简并拟线性椭圆方程的研究
  • 批准号:
    11640207
  • 财政年份:
    1999
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the Structure of Solutions of Degenerate Quasilinear Elliptic Equations
简并拟线性椭圆方程解结构的研究
  • 批准号:
    09640197
  • 财政年份:
    1997
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了