N-fold supersymmetry and its extension to multi-particle system and field theorie

N重超对称性及其在多粒子系统和场论中的推广

基本信息

  • 批准号:
    14540257
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

In this research, extention of the N-fold supersymmetry in supersymmetric quantum mechanics was investigated. N-fold supersymmetry was found from the asymptotic behaviour of the perturbative coefficients in 1-dimensional quantum mechanics by the present investigator. Since this symmetry shares many features of the ordinary supersymmetry, its extension to the multi-particle system and field theories is apparently important. This project was focused on this point. Many trials were made in several directions during the project period. The main result of this project, however, is the finding of the 2-fold supersymmetry in 3-dimensional quantum mechanics, through a long-series of calculation for finding the solution to the supersymmetry algebra.In the said construction, some ansatz were made for the form of the supercharge and the Hamiltonian. The 2-fold supersymmetry algebra induces a set of non-linear partial differential equations for the functions in the ansatz. There are about 15 functions to be obtained and thus solution is rather difficult to come by. We, however, have managed to show that the solution exists and identified several of them, thereby enabling the construction of the 3-dimensional model for the first time.The importance of the solvable model in all categories is evident. In this project, the shape-invatiant models are solvable. Therefore, we have been searching for them in our construction described above. We are close to concluding that such a model does not exist, although this is somewhat preliminary.
本文研究了超对称量子力学中N重超对称性的推广。作者从一维量子力学中微扰系数的渐近行为中发现了N重超对称性。由于这种对称性有许多普通超对称性的特征,它对多粒子系统和场论的扩展显然是重要的。本项目就是围绕这一点展开的。在项目期间,在几个方向上进行了许多试验。然而,本项目的主要成果是通过一系列求解超对称代数的长系列计算,发现了三维量子力学中的二重超对称。在该构造中,对超荷的形式和哈密顿量做了一些解释。2重超对称代数导出了一组关于ansatz中函数的非线性偏微分方程组。要得到的函数大约有15个,因此很难求出解。然而,我们已经成功地证明了解决方案的存在,并确定了其中的几个解决方案,从而首次能够构建三维模型。可解模型在所有类别中的重要性是显而易见的。在本项目中,形状发明模型是可解的。因此,我们在上述建设中一直在寻找它们。我们即将得出这样的模式不存在的结论,尽管这在某种程度上是初步的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AOYAMA Hideaki其他文献

AOYAMA Hideaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AOYAMA Hideaki', 18)}}的其他基金

Nonperturbative effects in the electroweak theory and the baryon number generation
电弱理论和重子数生成中的非微扰效应
  • 批准号:
    13135214
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Nonperturbative effects in QFT and new supersymmetry
QFT 中的非微扰效应和新的超对称性
  • 批准号:
    10640259
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tunnel Effects in Field Theory and Asymptotic Behavior of Perturbation Theories
场论中的隧道效应和微扰理论的渐近行为
  • 批准号:
    07640391
  • 财政年份:
    1995
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Exactly Solvable Models in Deep Learning
深度学习中的精确可解模型
  • 批准号:
    22KJ0949
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Evolution of data science theory through analysis of solvable models
通过分析可解模型来推动数据科学理论的发展
  • 批准号:
    22K12179
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of exotic quantum states emergent from strong spin-orbit coupling on the basis of exactly solvable models
基于精确可解模型研究强自旋轨道耦合产生的奇异量子态
  • 批准号:
    16K17747
  • 财政年份:
    2016
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New Fluctuation-Correlation Theorems in Exactly Solvable Models in Non-Equilibrium Statistical Mechanics
非平衡统计力学精确可解模型中的新涨落相关定理
  • 批准号:
    26400405
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Free field approach to solvable models associated with elliptic algebra
与椭圆代数相关的可解模型的自由场方法
  • 批准号:
    26400105
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on exactly solvable models for systems with nonequilibrium dynamics
非平衡动力学系统精确可解模型研究
  • 批准号:
    26610033
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies on two dimensional critical stochastic process by exactly solvable models and field theory
二维临界随机过程的精确可解模型和场论研究
  • 批准号:
    24540393
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solvable models in option pricing and credit risk
期权定价和信用风险的可解模型
  • 批准号:
    341233-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
Ab initio description of double and charge transfer excitations: from solvable models to complex systems
双激发和电荷转移激发的从头计算:从可解模型到复杂系统
  • 批准号:
    192610994
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Independent Junior Research Groups
Solvable models in option pricing and credit risk
期权定价和信用风险的可解模型
  • 批准号:
    341233-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了