道やループの空間の上での確率解析

道路和环路空间的概率分析

基本信息

  • 批准号:
    03J03705
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

本年度は主にラフパス理論とよばれる新分野について研究した。これは、約10年まえにT.Lyonsにより創始されたもので、常微分方程式の概念を拡張することにより、確率微分方程式を非ランダム化してしまう理論である。有限次元の場合などを含め、主要な場合は確率微分方程式と守備範囲が重なっているが、正確には、守備範囲がややずれている。たとえば、無限次元のバナッハ空間上ではラフパス理論は問題なく働くものの、確率微分方程式は一般にはうまくいかないことが知られている。私が今回研究したループ空間上の確率過程というのはまさにそういった例になっており、ラフパス理論を持ち出す必然性があると言える。なお、具体的な無限次元の確率過程にラフパス理論を適用したのは、私(と共著者)の研究が初めてであり、ある種の方向性を示したと言えると思う。より具体的な研究内容は、ラフパス理諭の枠組みの中で、大偏差原理やその精密化であるラプラスの方法などを示したことである。なおこの種の極限定理は確率論では、非常に有名であり、いわば「定番」である。特にラプラスの方法は、ラフパス理論の中でははじめて証明されたように思う。今回計算したのは、極限の最初の項だけであるが、現在は任意有限個の漸近展開を求めるべく努力中である。特に、具体例としてループ空間の場合では、この研究によりFang-Zbangによるループ群の場合の結果が極めて簡単に別証明できる上に、はるかに一般の場合にまで拡張できることがわかった。ラプラスの方法に関しては、ループ空間上では自明な場合を除けば、初めての結果であるように思う。なお、ラプラスの方法の証明中で重要な役割をはたす確率テーラー展開が、非常に重要であることがわかった。今回は大変原始的な形でしか証明していないが、この確率テーラー展開を一般的な形でまとめることが、この次の課題である。確率微分方程式の場合では、確率テーラー展開もウィーナー測度という測度の選び方に依存しているが、ラプラスの方法では完全に非ランダムに(確率)テーラー展開を証明できるために、きれいにまとめることはかなり重要であるように思う。
This year's main topic is theoretical research. This is about 10 years old. The concept of ordinary differential equation is expanded. The differential equation is not transformed. The finite dimensional differential equation is correct and accurate in both cases. In the infinite dimension, the problem of theory is solved in space, and the differential equation is solved in general. This paper discusses the necessity of the spatial accuracy of the process and the theory. The concrete infinite dimensional accuracy process is applied to the study of the initial and private aspects of the theory. The concrete research contents are as follows: the principle of large deviation, the method of precision, etc.なおこの种の极限定理は确率论では、非常に有名であり、いわば“定番”である。The method of special treatment is to prove that the theory is correct. This time, the calculation of the limit of the initial term is now arbitrary finite asymptotic expansion. In particular, specific examples of the case of the Fang-Zbang, the results of the case of the Fang-Zbang, the results of the results of the Fang-Zbang, the results of the The method is related to the space, the situation is self-evident, the result is self-evident, and the result is self-evident. The method of proof is very important. This time, the original shape of the original is proved to be correct, and the accuracy of the original shape is expanded. In the case of the exact differential equation, the exact differential equation is expanded, the exact differential equation is measured, the exact differential equation is selected, the exact differential equation is determined, and the exact differential equation is proved.

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large deviations for heat kernel measures on loop spaces Via rough paths
循环空间上热核测量值的较大偏差 通过粗糙路径
Laplace's method for the laws of heat processes on loop spaces
环空间热过程定律的拉普拉斯方法
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzuru Inahama;Yuzuru Inahama
  • 通讯作者:
    Yuzuru Inahama
Logarithmic Sobolev inequality for $H_0^s$-metric on pinned loop groups
固定循环组上 $H_0^s$ 度量的对数 Sobolev 不等式
Eigenvalue asymptotics for the Schrödinger operators on the real and the complex hyperbolic spaces
实双曲空间和复双曲空间上薛定谔算子的特征值渐近
  • DOI:
    10.1016/j.matpur.2004.01.005
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Inahama;S. Shirai
  • 通讯作者:
    S. Shirai
Yuzuru Inahama: "Eigenvalue asymptotics for the Shrodiger operators on the hyperbolic plane"J.Funct.Anal.. (to appear).
Yuzuru Inahama:“双曲平面上 Shrodiger 算子的特征值渐近”J.Funct.Anal..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

稲浜 譲其他文献

Existence, uniqueness and stability of weak solutions of parabolic systems with discontinuous nonlinearities
间断非线性抛物型系统弱解的存在性、唯一性和稳定性
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzuru lnahama;Hiroshi Kawabi;稲浜譲;Yuzuru Inahama;Yuzuru Inahama;稲浜譲;稲浜 譲;Yuzuru Inahama;Yuzuru Inahama;Hideo Deguchi
  • 通讯作者:
    Hideo Deguchi
一般化されたポテンシャルを持つ界面モデルに対する流体力学極限
具有广义势的界面模型的流体动力学极限
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzuru lnahama;Hiroshi Kawabi;稲浜譲;Yuzuru Inahama;Yuzuru Inahama;稲浜譲;稲浜 譲;Yuzuru Inahama;Yuzuru Inahama;Hideo Deguchi;Hideo Deguchi;Hideo Deguchi;T. Nishikawa;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄
  • 通讯作者:
    西川貴雄
Weak solutions of a parabolic system with a discontinuous nonlinearity
具有间断非线性的抛物线系统的弱解
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzuru lnahama;Hiroshi Kawabi;稲浜譲;Yuzuru Inahama;Yuzuru Inahama;稲浜譲;稲浜 譲;Yuzuru Inahama;Yuzuru Inahama;Hideo Deguchi;Hideo Deguchi
  • 通讯作者:
    Hideo Deguchi
Large deviation for the Ginzburg-Landau∇φinterface model with conservation law
具有守恒定律的Ginzburg-Landau∇φ界面模型的大偏差
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzuru lnahama;Hiroshi Kawabi;稲浜譲;Yuzuru Inahama;Yuzuru Inahama;稲浜譲;稲浜 譲;Yuzuru Inahama;Yuzuru Inahama;Hideo Deguchi;Hideo Deguchi;Hideo Deguchi;T. Nishikawa;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄
  • 通讯作者:
    西川貴雄
Large deviation for the Ginzburg-Landau ▽φ interface model with a conservation law
具有守恒定律的 Ginzburg-Landau ▽φ 界面模型的大偏差
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzuru lnahama;Hiroshi Kawabi;稲浜譲;Yuzuru Inahama;Yuzuru Inahama;稲浜譲;稲浜 譲;Yuzuru Inahama;Yuzuru Inahama;Hideo Deguchi;Hideo Deguchi;Hideo Deguchi;T. Nishikawa;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川貴雄;西川 貴雄
  • 通讯作者:
    西川 貴雄

稲浜 譲的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('稲浜 譲', 18)}}的其他基金

確率解析の新展開
概率分析的新进展
  • 批准号:
    23K20216
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in stochastic analysis
随机分析的新进展
  • 批准号:
    20H01807
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic dynamics for singularly perturbed PDEs with fractional Brownian motions
具有分数布朗运动的奇扰动偏微分方程的随机动力学
  • 批准号:
    18F18314
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

確率過程における頑健なモデル評価基準の構築
为随机过程建立稳健的模型评估标准
  • 批准号:
    24K16971
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
フラクタルおよびその上の確率過程における解析学・幾何学とその相互関係の研究
分形及其随机过程中的分析、几何及其相互关系的研究
  • 批准号:
    23K22399
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
確率過程としての乱択計算論
作为随机过程的随机计算理论
  • 批准号:
    23K21645
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
テンソル値確率過程・縮小ランク推定・加重推定法を用いた複雑データ解析の新展開
使用张量值随机过程、降序估计和加权估计方法进行复杂数据分析的新进展
  • 批准号:
    24K04815
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
抵抗形式を用いたランダム環境中の確率過程の解析
使用阻力形式分析随机环境中的随机过程
  • 批准号:
    24KJ1447
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
確率過程の極限挙動の多様な構造に関する研究
随机过程极限行为的各种结构研究
  • 批准号:
    24K06781
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ジャンプを含む確率過程の複雑な観測データに対する統計解析と新しい学習理論への応用
随机过程复杂观测数据的统计分析(包括跳跃)及其在新学习理论中的应用
  • 批准号:
    23K20809
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ランダム媒質中の確率過程に関する研究
随机介质中的随机过程研究
  • 批准号:
    23K03135
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
加法過程に関連した確率過程とファイナンスの数理
与加法过程和金融数学相关的随机过程
  • 批准号:
    23K12507
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
確率過程と確率フーリエ係数
随机过程和随机傅里叶系数
  • 批准号:
    22K03352
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了