Construction of a Superrobust Computation Paradigm
构建超鲁棒计算范式
基本信息
- 批准号:15100001
- 负责人:
- 金额:$ 75.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (S)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research was to construct a paradigm for designing robust algorithms in a wide area of computation. To achieve this goal, we developed robust computation techniques in individual areas of computations such as physical simulation, parallel and distributed computation, computation for control, geometric computation, discrete optimization, information coding, and quantum computation, and from them we tried to extract common and transversal principles applicable to designing robust algorithms in a wide area of computation. As the results, we succeeded in extracting the following general principles. The first principle is to use structural invariances that lay behind the computation. Applying this principle, we developed robust geometric algorithms based on topologically consistent graph manipulations, robust methods for solving partial differential equations based on physical laws behind, robust control based on causal relations among events, and robust algebraic computations based on sign patterns and zero-nonzero patterns. The second principle is to remove restrictions by extending the object world; examples are hyperfigure algebra and symbolic perturbation in geometric computations. The third principle is to remove uncertainty by restricting the object world. The other principles include modeling of uncertainty for coping with the worst case, and the generalizations by the removal of unrealistic assumptions of the computational world. These principles have also been applied to individual computation such as discrete optimization, mathematical programming, coding, matrix computation, integer programming related to practical problems. Thus we established a first version of superrobust computation paradigm.
本研究的目的是为在广泛的计算领域中设计健壮的算法构建一个范例。为了实现这一目标,我们在物理模拟、并行和分布式计算、控制计算、几何计算、离散优化、信息编码和量子计算等计算领域开发了鲁棒计算技术,并试图从中提取适用于在广泛计算领域设计鲁棒算法的通用和横向原则。作为结果,我们成功地提取了以下一般原则。第一个原则是使用计算背后的结构不变性。应用这一原理,我们开发了基于拓扑一致性图操作的鲁棒几何算法,基于背后物理定律的求解偏微分方程的鲁棒方法,基于事件之间因果关系的鲁棒控制,以及基于符号模式和零-非零模式的鲁棒代数计算。第二个原则是通过扩展对象世界来消除限制;例如几何计算中的超图形代数和符号摄动。第三个原则是通过限制对象世界来消除不确定性。其他原则包括应对最坏情况的不确定性建模,以及通过消除计算世界中不切实际的假设来进行概括。这些原则也被应用于个别计算,如离散优化,数学规划,编码,矩阵计算,整数规划相关的实际问题。因此,我们建立了第一个版本的超鲁棒计算范式。
项目成果
期刊论文数量(248)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the relationship between convex bodies related to correlation experiments with dichotomic observables
- DOI:10.1088/0305-4470/39/36/010
- 发表时间:2006-05
- 期刊:
- 影响因子:0
- 作者:D. Avis;H. Imai;Tsuyoshi Ito McGill University;T. U. O. Tokyo;Japan Science;Technology Agency;Japan Science
- 通讯作者:D. Avis;H. Imai;Tsuyoshi Ito McGill University;T. U. O. Tokyo;Japan Science;Technology Agency;Japan Science
Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear matrix inequalities
参数相关线性矩阵不等式概率解的多项式时间算法
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Y. Fujisaki;Y. Oishi;Y. Oishi
- 通讯作者:Y. Oishi
Simultaneous prediction of independent Poisson observables
独立泊松可观测量的同时预测
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Kuriki;A.Takemura;F.Komaki
- 通讯作者:F.Komaki
Deterministic network coding by matrix completion
- DOI:
- 发表时间:2005-01
- 期刊:
- 影响因子:0
- 作者:Nicholas J. A. Harvey;David R Karger;K. Murota
- 通讯作者:Nicholas J. A. Harvey;David R Karger;K. Murota
Stochastic Model of Chaotic Phase Synchronization. II
混沌相位同步的随机模型。
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T. Horita;K. Ouchi;T. Yamada;H. Fujisaka
- 通讯作者:H. Fujisaka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUGIHARA Kokichi其他文献
SUGIHARA Kokichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUGIHARA Kokichi', 18)}}的其他基金
Dimension-Change Principle for Robust Geometric Computation
鲁棒几何计算的尺寸变化原理
- 批准号:
24650015 - 财政年份:2012
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of robust geometric computation algorithms for time-varying spaces
时变空间鲁棒几何计算算法的构建
- 批准号:
20360044 - 财政年份:2008
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of Hyperfigure Theory and Its Applications
超图理论的构建及其应用
- 批准号:
13450039 - 财政年份:2001
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design of Precision-Guaranteed Geometric Algorithms
精度保证的几何算法的设计
- 批准号:
10205205 - 财政年份:1998
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Practical Computational Geometry - Unifying Study on Robust Geometric Computation
实用计算几何-鲁棒几何计算的统一研究
- 批准号:
10358005 - 财政年份:1998
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Robust Implementation of 4-D Geometric Algorithm and Applications
4-D 几何算法和应用的稳健实现
- 批准号:
10450040 - 财政年份:1998
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Image Processing Based on Spline Representation
基于样条表示的图像处理
- 批准号:
07650075 - 财政年份:1995
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of a Topology-Oriented Geometric System
面向拓扑的几何系统的构建
- 批准号:
05555027 - 财政年份:1993
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
Design of numerically robust geometric algorithms
数值鲁棒几何算法的设计
- 批准号:
04452191 - 财政年份:1992
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Study on Representations and Processing of Geometric Objects in Terms of Mutual Constraints
几何对象相互约束的表示与处理研究
- 批准号:
62580017 - 财政年份:1987
- 资助金额:
$ 75.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)