Design of numerically robust geometric algorithms
数值鲁棒几何算法的设计
基本信息
- 批准号:04452191
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design principle called "combinatorial abstraction", which was proposed by our research group for numerically robust geometric algorithms, has been studied from both theoretical and experimental points of view.This principle was successfully applied to the problems of constructing ordinary Voronoi diagrams in two- and three-dimensional space, constructing generalized Voronoi diagrams for line segments and for polygons, constructing three-dimensional convex hulls, intersecting convex polyhedra, constructing Laguerre Voronoi diagrams, constructing arrangements of line segments, and constructing Voronoi diagrams for arbitrary figures. Furthermore, it was found that this principle is applicable if the objects admit topological properties that can be checked efficiently.From a theoretical point of view, it became clear that the algorithm designed by this principle solves the geometric problem in the world of combinatorial geometry. From an experimental point of view, on the other hand, the computer programs made in this principle turned out to be completely robust in the sense that they never fail even if the arithmetic precision is poor.
本文从理论和实验两方面研究了本课题组提出的数值鲁棒几何算法的设计原则--组合抽象原则,并成功地应用于二维和三维空间中普通Voronoi图的构造、线段和多边形的广义Voronoi图的构造、三维凸包的构造、相交凸多面体,构造Laguerre Voronoi图,构造线段排列,构造任意图形的Voronoi图。此外,还发现,如果对象具有可以被有效检验的拓扑性质,则该原理是适用的。从理论的角度来看,很明显,由该原理设计的算法解决了组合几何世界中的几何问题。另一方面,从实验的角度来看,根据这一原理编制的计算机程序是完全健壮的,因为即使算术精度很差,它们也不会失败。
项目成果
期刊论文数量(124)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
稲垣宏: "3次元ボロノイ図構成のためのの数値的に安定な逐次添加法" 情報処理学会論文誌. 35. 1-10 (1994)
Hiroshi Inagaki:“三维 Voronoi 图构造的数值稳定顺序加法”日本信息处理学会杂志 35. 1-10 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sugihara: "Application of the Delaunay triangulation to geometric intersection problems" Lecture Notes in Control and Information Sciences(“System Modelling and Optimization",Proc.15th IFIP Conference). 180. 112-121 (1992)
K.Sugihara:“Delaunay 三角剖分在几何相交问题中的应用”控制与信息科学讲义(“系统建模与优化”,Proc.15th IFIP Conference)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sugihara: "Approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams" CVGIP:Graphical Models and Processing. 55. 522-531 (1993)
K.Sugihara:“用普通 Voronoi 图近似广义 Voronoi 图” CVGIP:图形模型和处理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sugihara: "Voronoi diagrams in a river" International Journal of Computational Geometry and Applications. 2. 29-48 (1992)
K.Sugihara:“河流中的 Voronoi 图”国际计算几何与应用杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Sugihara: "Simpler proof of a realizability theorrem on Delaunay triangulations" Information Processing Letters. 50. 173-176 (1994)
K.Sugihara:“关于 Delaunay 三角剖分的可实现性定理的简单证明”信息处理快报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUGIHARA Kokichi其他文献
SUGIHARA Kokichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUGIHARA Kokichi', 18)}}的其他基金
Dimension-Change Principle for Robust Geometric Computation
鲁棒几何计算的尺寸变化原理
- 批准号:
24650015 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of robust geometric computation algorithms for time-varying spaces
时变空间鲁棒几何计算算法的构建
- 批准号:
20360044 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of a Superrobust Computation Paradigm
构建超鲁棒计算范式
- 批准号:
15100001 - 财政年份:2003
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Construction of Hyperfigure Theory and Its Applications
超图理论的构建及其应用
- 批准号:
13450039 - 财政年份:2001
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design of Precision-Guaranteed Geometric Algorithms
精度保证的几何算法的设计
- 批准号:
10205205 - 财政年份:1998
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Practical Computational Geometry - Unifying Study on Robust Geometric Computation
实用计算几何-鲁棒几何计算的统一研究
- 批准号:
10358005 - 财政年份:1998
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Robust Implementation of 4-D Geometric Algorithm and Applications
4-D 几何算法和应用的稳健实现
- 批准号:
10450040 - 财政年份:1998
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Image Processing Based on Spline Representation
基于样条表示的图像处理
- 批准号:
07650075 - 财政年份:1995
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of a Topology-Oriented Geometric System
面向拓扑的几何系统的构建
- 批准号:
05555027 - 财政年份:1993
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
Study on Representations and Processing of Geometric Objects in Terms of Mutual Constraints
几何对象相互约束的表示与处理研究
- 批准号:
62580017 - 财政年份:1987
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Travel: Student Travel Grant for 2023 Computational Geometry Week
旅行:2023 年计算几何周学生旅行补助金
- 批准号:
2321292 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Visibility in Computational Geometry
计算几何中的可见性
- 批准号:
574590-2022 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
University Undergraduate Student Research Awards
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Computational Geometry from a Fine-Grained Perspective
AF:小:细粒度角度的计算几何
- 批准号:
2224271 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Design and analysis of algorithms for problems in computational geometry
计算几何问题的算法设计与分析
- 批准号:
RGPIN-2021-03823 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Optimization Problems in Computational Geometry
计算几何中的优化问题
- 批准号:
RGPIN-2017-06385 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Problems in Discrete and Computational Geometry
离散和计算几何问题
- 批准号:
RGPIN-2020-04329 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual