Bergman zeta function and index theorems of complex domains

Bergman zeta 函数和复域指数定理

基本信息

  • 批准号:
    15340040
  • 负责人:
  • 金额:
    $ 4.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The Bergman-zeta function is a meromorphic function of one complex variable that is defined by the analytic continuation of the integral of weighted Bergman kernel on the diagonal ; here the integral is considered as a function of a parameter s with which we define the weight r^s for a domain r>0. We fist showed that the residues of the Bergman-zeta function contain a biholomorphic invariant and proved that the invariant is given by the integral of a local pseudo-hermitian invariant P, which is defined as the log term of the Szego kernel. In 2 dimensions, we also showed that P agrees with the CR Q-curvature, which is defined via a CR invariant differential operator, while for higher dimensions, the relation between P and CR Q-curvature was difficult to analyze. We thus also studied the Q-curvature in conformal geometry, which is the area where Q-curvature was originally introduced. The definition of the Q-curvature was not so clear as it is based on an argument using analytic continuation in dimension. We thus gave (with Prof.Fefferman) an explicit formula of the Q-curvature in terms of the ambient metric. We also showed (with Prof.Graham) that the variation of the integral of the Q-curvature in a deformation of conformal structure is given by the Fefferman-Graham obstruction tensor. These result can be translated to the case of CR Q-curvature and give its expression in terms of the ambient metric of the CR structure. This argument, together with parabolic invariant theory, gives, in 2-dimensions, a simple proof of the fact that P agrees with CR Q-curvature, and for higher dimensions, a way to construct several pseudo-hermitian invariant that has invariance property similar to CR Q-curvature; we hope to purse this approach and write the difference between P and CR Q-curvature.
Bergman-zeta函数是由加权Bergman核的积分在对角线上的解析延拓定义的一个复变量的亚纯函数;这里积分被认为是一个参数s的函数,我们用它定义了区域r>0的权重r^s。首先证明了Bergman-zeta函数的残基中含有一个双全纯不变量,并证明了该不变量是由一个局部伪埃尔米特不变量P的积分给出的,P被定义为Szego核的对数项.在2维中,我们还证明了P与CR Q-曲率一致,CR Q-曲率是通过CR不变微分算子定义的,而对于更高维,P与CR Q-曲率之间的关系很难分析。因此,我们还研究了共形几何中的Q-曲率,这是Q-曲率最初被引入的领域。Q-曲率的定义并不那么清楚,因为它是基于一个使用解析延拓的参数。因此,我们(与Fergusman教授)给出了一个关于环境度量的Q曲率的显式公式。我们还表明(与格雷厄姆教授),在共形结构的变形中的Q-曲率的积分的变化是由费曼-格雷厄姆阻塞张量。这些结果可以推广到CR Q-曲率的情形,并给出其在CR结构的环境度量下的表达式。本文结合抛物不变量理论,给出了二维情形下P与CR Q-曲率一致的简单证明,并给出了高维情形下构造几个具有CR Q-曲率不变性的伪埃尔米特不变量的方法,希望能进一步探索这一方法,写出P与CR Q-曲率的区别。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A link between the asymptotic expansions of the Bergman kernel and the Szego kernel
Bergman 核和 Szego 核的渐近展开式之间的联系
Logarithmic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains
  • DOI:
    10.4007/annals.2006.163.499
  • 发表时间:
    2003-09
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    K. Hirachi
  • 通讯作者:
    K. Hirachi
平地健吾, Charles Fefferman: "Ambient metric construction of Q-curvature in conformal and CR geometries"Mathematical Research Letters. 10. 819-832 (2003)
Kengo Hirachi、Charles Fefferman:“共形和 CR 几何中 Q 曲率的环境度量构造”《数学研究快报》10. 819-832 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
平地健吾, Rod Gover: "Conformally invariant powers of the Laplacian - A complete non-existence theorem"Journal of American Mathematical Society. 17. 389-405 (2004)
Kengo Hirachi,Rod Gover:“拉普拉斯算子的共形不变幂 - 完全不存在定理”美国数学会杂志 17. 389-405 (2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Conformally invariant powers of the Laplacian — A complete nonexistence theorem
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIRACHI Kengo其他文献

HIRACHI Kengo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIRACHI Kengo', 18)}}的其他基金

New development of geometric complex analysis
几何复形分析新进展
  • 批准号:
    22244008
  • 财政年份:
    2010
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of complex analysis from a point of view of parabolic geometry
从抛物线几何角度研究复分析
  • 批准号:
    18340036
  • 财政年份:
    2006
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic expansion of the Bergman kernel and CR gauge invariants
Bergman 核和 CR 规范不变量的渐近展开
  • 批准号:
    12640176
  • 财政年份:
    2000
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Invariant theory of the Bergman kernel and index theorems.
伯格曼核的不变理论和指数定理。
  • 批准号:
    10640168
  • 财政年份:
    1998
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Mathematical Sciences: Parabolic Invariant Theory and Geometric Analysis
数学科学:抛物线不变理论和几何分析
  • 批准号:
    9303497
  • 财政年份:
    1993
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了