Finite element analysis for 3-dimensional large scale problem by using domain decomposition methods

使用域分解方法对 3 维大规模问题进行有限元分析

基本信息

  • 批准号:
    15360044
  • 负责人:
  • 金额:
    $ 9.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

A.Numerical computations of large scale magnetic problems by finite element method:First, we have developed computational codes for time-harmonic eddy current problems and nonlinear magnetostatic problems. To make the codes efficient, then we have considered the reduction of their computational costs, and the enhancement of applicable problems, for example, a permanent magnet or a moving obstacle.B.Numerical solver for linear systems with symmetric coefficient matrices:We have considered the convergence of MRTR method based on the minimization of residuals. Moreover, we have developed several precondisioners, which come from robust incomplete Cholesky factorization, and have shown their efficiency by appling to some real problems.C.Application of a substracturing method to discretized Stokes equations:We have established a coarse space of a balancing precondisioner for applying to discretized Stokes equations.D.Error estimates of finite element methods for thermal convection problems:We have established error estimates of a class of finite element methods for thermal convection problems with variable coefficients.E.Realization of highly efficient BDD methods for large scale structural analysis:We have developed incomplete BDD methods, improved its parallel efficiency, and realized nonstationary structural analysis with about 10 million DOF problems.
A.用有限元法进行大规模磁问题的数值计算:首先,我们开发了时谐涡流问题和非线性静磁问题的计算代码。为了使代码的效率,那么我们已经考虑了减少其计算成本,并提高适用的问题,例如,一个永久磁铁或移动的障碍物。B。数值求解器的线性方程组的对称系数矩阵:我们已经考虑了收敛的MRTR方法的残差最小化的基础上。此外,我们还开发了几个预条件,来自鲁棒不完全Cholesky分解,并已通过应用于一些真实的问题显示了它们的效率。C.应用减结构方法离散Stokes方程:我们已经建立了一个粗略的空间的平衡预条件适用于离散Stokes方程。D.热对流问题的有限元方法的误差估计:本文建立了变系数热对流问题的一类有限元方法的误差估计。E.高效的有限元方法的实现大规模结构分析的BDD方法:我们发展了不完全BDD方法,提高了其并行效率,实现了约1000万自由度的非平稳结构分析。

项目成果

期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Verification of large-scale analysis of 3-d nonlinear magnetostatic problems
3 维非线性静磁问题大规模分析的验证
Effectiveness of A-φ method in a parallel computing with an iterative domain decomposition method
A-φ方法在迭代域分解方法并行计算中的有效性
Seismic response analysis of nuclear pressure vessel model with ADVENTURE System on the Earth Simulator
地球模拟器上利用 ADVENTURE System 进行核压力容器模型地震响应分析
Advanced general-purpose finite element solid analysis system ADVENTURE_SOLID on the Earth Simulator
地球模拟器上的先进通用有限元固体分析系统 ADVENTURE_SOLID
An enhancement of efficiency for robust incomplete factorization preconditioning based on A-orthogonalization process.
基于A正交化过程的鲁棒不完全因式分解预处理效率的提高。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANAYAMA Hiroshi其他文献

KANAYAMA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANAYAMA Hiroshi', 18)}}的其他基金

Unified construction of preconditioners in ultra-large-scale domain decomposition analysis
超大规模域分解分析中预处理器的统一构建
  • 批准号:
    24560075
  • 财政年份:
    2012
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Supermassive black hole growth - a small-scale solution to a large-scale problem
超大质量黑洞的增长——大规模问题的小规模解决方案
  • 批准号:
    ST/M005283/2
  • 财政年份:
    2016
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Fellowship
Supermassive black hole growth - a small-scale solution to a large-scale problem
超大质量黑洞的增长——大规模问题的小规模解决方案
  • 批准号:
    ST/M005283/1
  • 财政年份:
    2015
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Fellowship
Engineering Research Equipment: Real-Time Scheduling via Large-Scale Problem Reformation
工程研究设备:通过大规模问题改造进行实时调度
  • 批准号:
    9622138
  • 财政年份:
    1996
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Dynamic Uncertainty Management for Large Scale Problem Solving
解决大规模问题的动态不确定性管理
  • 批准号:
    9100530
  • 财政年份:
    1991
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了